Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 10: 188, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881356

RESUMEN

The phagosome microenvironment maintains enzyme activity and function. Here we compared the phagosomal pH of human neutrophils, monocytes, dendritic cells (DC), and monocyte-derived cells. An unexpected observation was the striking difference in phagosomal environment between the three monocytes subsets. Classical monocytes and neutrophils exhibited alkaline phagosomes, yet non-classical monocytes had more acidic phagosomes, while intermediate monocytes had a phenotype in-between. We next investigated the differences between primary naïve DC vs. in vitro monocyte-derived DC (MoDC) and established that both these cells had acidic phagosomal environments. Across all phagocytes, alkalinization was dependent upon the activity of the NADPH oxidase activity, demonstrated by the absence of NADPH oxidase from a patient with chronic granulomatous disease (CGD) or the use of a pharmacological inhibitor, diphenylene iodonium (DPI). Interestingly, MoDC stimulated with bacterial lipopolysaccharide had increased phagosomal pH. Overall, the increase in alkalinity within the phagosome was associated with increased oxidase activity. These data highlight the heterogeneous nature and potential function of phagocytic vacuoles within the family of mononuclear phagocytes.


Asunto(s)
Microambiente Celular , Neutrófilos/metabolismo , Fagocitos/metabolismo , Fagosomas/metabolismo , Biomarcadores , Microambiente Celular/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Inmunofenotipificación , Lisosomas/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , NADPH Oxidasas/metabolismo , Neutrófilos/inmunología , Oxidación-Reducción , Fagocitos/inmunología , Fagocitosis
2.
Curr Protoc Immunol ; 122(1): e53, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29969195

RESUMEN

This article describes methods for isolating mouse monocytes and neutrophils, as well as in vitro protocols for measuring cell phagocytosis, migration, and polarization. The method employed here for the isolation of naive phagocytes overcomes many of the difficulties previously encountered concerning phagocyte activation. Three in vitro protocols are provided for the analysis of cell migration, one requiring no specialized equipment, one requiring a modified Boyden chamber, and the other employing a flow chamber, which measures cell adhesion, rolling, and migration. Three in vitro protocols to examine phagocytosis have been included in this updated version. Finally, a method is provided for imaging polarized cells by confocal microscopy. © 2018 by John Wiley & Sons, Inc.

3.
Front Pharmacol ; 8: 728, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29042853

RESUMEN

[This corrects the article on p. 94 in vol. 8, PMID: 28293191.].

4.
Front Pharmacol ; 8: 262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553230

RESUMEN

The dialysis of human and mouse neutrophils in patch clamp experiments in the conventional whole-cell mode induces the emergence of a chloride (Cl-) current that appeared to be primarily regulated by cytoplasmic ionic strength. The characteristics of this current resembled that of the classical, and ubiquitous volume-sensitive outwardly rectifying Cl- current: strong outward rectification, selectivity sequence of the Eisenman1 type, insensitivity to external pH and strong inhibition by tamoxifen, DCPIB and WW781. We show that this current is essentially supported by the leucine rich repeat containing 8 A (LRRC8A); the naturally occurring LRRC8A truncation mutant in ebo/ebo mice drastically reduced Cl- conductance in neutrophils. Remarkably, the residual component presents a distinct pharmacology, but appears equally potentiated by reduced ionic strength. We have investigated the role of the LRRC8A-supported current in the ionic homeostasis of the phagosomal compartment. The vacuolar pH, measured using SNARF-1 labeled Candida albicans, normally rises because of NADPH oxidase activity, and this elevation is blocked by certain Cl- channel inhibitors. However, the pH rise remains intact in neutrophils from the ebo/ebo mice which also demonstrate preserved phagocytic and respiratory burst capacities and normal-sized vacuoles. Thus, the LRRC8A-dependent conductance of neutrophils largely accounts for their "swell activated" Cl- current, but is not required for homeostasis of the phagosomal killing compartment.

5.
J Vis Exp ; (122)2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28448042

RESUMEN

Neutrophils are crucial to host innate defense and, consequently, constitute an important area of medical research. The phagosome, the intracellular compartment where the killing and digestion of engulfed particles take place, is the main arena for neutrophil pathogen killing that requires tight regulation. Phagosomal pH is one aspect that is carefully controlled, in turn regulating antimicrobial protease activity. Many fluorescent pH-sensitive dyes have been used to visualize the phagosomal environment. S-1 has several advantages over other pH-sensitive dyes, including its dual emission spectra, its resistance to photo-bleaching, and its high pKa. Using this method, we have demonstrated that the neutrophil phagosome is unusually alkaline in comparison to other phagocytes. By using different biochemical conjugations of the dye, the phagosome can be delineated from the cytoplasm so that changes in the size and shape of the phagosome can be assessed. This allows for further monitoring of ionic movement.


Asunto(s)
Neutrófilos/citología , Neutrófilos/ultraestructura , Fagocitos/ultraestructura , Fagosomas/ultraestructura , Citoplasma/química , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno
6.
Front Pharmacol ; 8: 94, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293191

RESUMEN

Neutrophils phagocytosing bacteria and fungi exhibit a burst of non-mitochondrial respiration that is required to kill and digest the engulfed microbes. This respiration is accomplished by the movement of electrons across the wall of the phagocytic vacuole by the neutrophil NADPH oxidase, NOX2. In this study, we have attempted to identify the non-proton ion channels or transporters involved in charge compensation by examining the effect of inhibitors on vacuolar pH and cross-sectional area, and on oxygen consumption. The chloride channel inhibitors 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (DCPIB) and flufenamic acid (FFA) were the most effective inhibitors of alkalinisation in human neutrophil vacuoles, suggesting an efflux of chloride from the vacuole. The proton channel inhibitor, zinc (Zn2+), combined with DCPIB caused more vacuolar swelling than either compound alone, suggesting the conductance of osmotically active cations into the vacuole. Support for cation influx was provided by the broad-spectrum cation transport inhibitors anandamide and quinidine which inhibited vacuolar alkalinisation and swelling when applied with zinc. Oxygen consumption was generally unaffected by these anion or cation inhibitors alone, but when combined with Zn2+ it was dramatically reduced, suggesting that multiple channels in combination can compensate the charge. In an attempt to identify specific channels, we tested neutrophils from knock-out mouse models including CLIC1, ClC3, ClC4, ClC7, KCC3, KCNQ1, KCNE3, KCNJ15, TRPC1/3/5/6, TRPA1/TRPV1, TRPM2, and TRPV2, and double knockouts of CLIC1, ClC3, KCC3, TRPM2, and KCNQ1 with HVCN1, and humans with channelopathies involving BEST1, ClC7, CFTR, and MCOLN1. No gross abnormalities in vacuolar pH or area were found in any of these cells suggesting that we had not tested the correct channel, or that there is redundancy in the system. The respiratory burst was suppressed in the KCC3-/- and enhanced in the CLIC1-/- cells, but was normal in all others, including ClC3-/-. These results suggest charge compensation by a chloride conductance out of the vacuole and by cation/s into it. The identity of these channels remains to be established.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...