Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Res Insect Sci ; 5: 100084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798278

RESUMEN

Why are some species sexually dimorphic while other closely related species are not? While all females in genus Strauzia share a multiply-banded wing pattern typical of many other true fruit flies, males of four species have noticeably elongated wings with banding patterns "coalesced" into a continuous dark streak across much of the wing. We take an integrative phylogenetic approach to explore the evolution of this dimorphism and develop general hypotheses underlying the evolution of wing dimorphism in flies. We find that the origin of coalesced and other darkened male wing patterns correlate with the inferred origin of host plant sharing in Strauzia. While wing shape among non-host-sharing species tended to be conserved across the phylogeny, shapes of male wings for Strauzia species sharing the same host plant were more different from one another than expected under Brownian models of evolution and overall rates of wing shape change differed between non-host-sharing species and host-sharing species. A survey of North American Tephritidae finds just three other genera with specialist species that share host plants. Host-sharing species in these genera also have wing patterns unusual for each genus. Only genus Eutreta is like Strauzia in having the unusual wing patterns only in males, and of genera that have multiple species sharing hosts, only in Eutreta and Strauzia do males hold territories while females search for mates. We hypothesize that in species that share host plants, those where females actively search for males in the presence of congeners may be more likely to evolve sexually dimorphic wing patterns.

2.
Evolution ; 78(1): 174-187, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37943790

RESUMEN

Host shifts to new plant species can drive speciation for plant-feeding insects, but how commonly do host shifts also drive diversification for the parasites of those same insects? Oak gall wasps induce galls on oak trees and shifts to novel tree hosts and new tree organs have been implicated as drivers of oak gall wasp speciation. Gall wasps are themselves attacked by many insect parasites, which must find their hosts on the correct tree species and organ, but also must navigate the morphologically variable galls with which they interact. Thus, we ask whether host shifts to new trees, organs, or gall morphologies correlate with gall parasite diversification. We delimit species and infer phylogenies for two genera of gall kleptoparasites, Synergus and Ceroptres, reared from a variety of North American oak galls. We find that most species were reared from galls induced by just one gall wasp species, and no parasite species was reared from galls of more than four species. Most kleptoparasite divergence events correlate with shifts to non-ancestral galls. These shifts often involved changes in tree habitat, gall location, and gall morphology. Host shifts are thus implicated in driving diversification for both oak gall wasps and their kleptoparasitic associates.


Asunto(s)
Quercus , Avispas , Animales , Avispas/genética , Árboles , Filogenia , Ecosistema
3.
Evolution ; 76(8): 1849-1867, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35819249

RESUMEN

Quantifying the frequency of shifts to new host plants within diverse clades of specialist herbivorous insects is critically important to understand whether and how host shifts contribute to the origin of species. Oak gall wasps (Hymenoptera: Cynipidae: Cynipini) comprise a tribe of ∼1000 species of phytophagous insects that induce gall formation on various organs of trees in the family Fagacae-primarily the oaks (genus Quercus; ∼435 sp.). The association of oak gall wasps with oaks is ancient (∼50 my), and most oak species are galled by one or more gall wasp species. Despite the diversity of both gall wasp species and their plant associations, previous phylogenetic work has not identified the strong signal of host plant shifting among oak gall wasps that has been found in other phytophagous insect systems. However, most emphasis has been on the Western Palearctic and not the Nearctic where both oaks and oak gall wasps are considerably more species rich. We collected 86 species of Nearctic oak gall wasps from most of the major clades of Nearctic oaks and sequenced >1000 Ultraconserved Elements (UCEs) and flanking sequences to infer wasp phylogenies. We assessed the relationships of Nearctic gall wasps to one another and, by leveraging previously published UCE data, to the Palearctic fauna. We then used phylogenies to infer historical patterns of shifts among host tree species and tree organs. Our results indicate that oak gall wasps have moved between the Palearctic and Nearctic at least four times, that some Palearctic wasp clades have their proximate origin in the Nearctic, and that gall wasps have shifted within and between oak tree sections, subsections, and organs considerably more often than previous data have suggested. Given that host shifts have been demonstrated to drive reproductive isolation between host-associated populations in other phytophagous insects, our analyses of Nearctic gall wasps suggest that host shifts are key drivers of speciation in this clade, especially in hotspots of oak diversity. Although formal assessment of this hypothesis requires further study, two putatively oligophagous gall wasp species in our dataset show signals of host-associated genetic differentiation unconfounded by geographic distance, suggestive of barriers to gene flow associated with the use of alternative host plants.


Asunto(s)
Quercus , Avispas , Animales , Filogenia , Plantas , Avispas/genética
4.
Mol Ecol ; 31(16): 4417-4433, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35762844

RESUMEN

Cryptic species diversity is a major challenge regarding the species-rich community of parasitoids attacking oak gall wasps due to a high degree of sexual dimorphism, morphological plasticity, small size and poorly known biology. As such, we know very little about the number of species present, nor the evolutionary forces responsible for generating this diversity. One hypothesis is that trait diversity in the gall wasps, including the morphology of the galls they induce, has evolved in response to selection imposed by the parasitoid community, with reciprocal selection driving diversification of the parasitoids. Using a rare, continental-scale data set of Sycophila parasitoid wasps reared from 44 species of cynipid galls from 18 species of oak across the USA, we combined mitochondrial DNA barcodes, ultraconserved elements (UCEs), morphological and natural history data to delimit putative species. Using these results, we generate the first large-scale assessment of ecological specialization and host association in this species-rich group, with implications for evolutionary ecology and biocontrol. We find most Sycophila target specific subsets of available cynipid host galls with similar morphologies, and generally attack larger galls. Our results suggest that parasitoid wasps such as Sycophila have adaptations allowing them to exploit particular host trait combinations, while hosts with contrasting traits are resistant to attack. These findings support the tritrophic niche concept for the structuring of plant-herbivore-parasitoid communities.


Asunto(s)
Quercus , Avispas , Animales , Fenotipo , Filogenia , Plantas , Quercus/genética , Avispas/genética
5.
Environ Entomol ; 51(2): 440-450, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35137031

RESUMEN

Seasonal temperatures select for eclosion timing of temperate insects and their parasitoids. In western North America, the fruit fly Rhagoletis zephyria Snow (Diptera: Tephritidae) is parasitized by the hymenopterous wasps Utetes lectoides (Gahan), an egg parasite, and Opius downesi Gahan, a larval parasite (both Braconidae). Eclosion of wasps should be timed with the presence of susceptible fly stages, but reports indicate U. lectoides ecloses in the absence of flies under no-chill conditions. Based on this, we tested the hypotheses that chill durations and no-chill temperatures both differentially regulate eclosion times of R. zephyria and its parasitic wasps. When fly puparia were chilled at ~3°C for 130-180 d, U. lectoides and O. downesi always eclosed on average later than flies. However, after 180-d chill, flies eclosed on average earlier than after 130- and 150-d chill, whereas eclosion times of U. lectoides and O. downesi were less or not affected by chill duration. When fly puparia were exposed to 20-22°C (no chill), U. lectoides eclosed before flies, with 88.9% of U. lectoides versus only 0.61% of flies eclosing. Taken together, findings show that eclosion times of flies are more sensitive to changes in chill duration than those of wasps. Flies are less sensitive than wasps to no-chill in that most flies do not respond by eclosing after no-chill while most wasps do. Our results suggest that shorter winters and longer summers due to climate change could cause mismatches in eclosion times of flies and wasps, with potentially significant evolutionary consequences.


Asunto(s)
Tephritidae , Avispas , Animales , Larva , América del Norte , Temperatura , Tephritidae/fisiología , Avispas/fisiología
6.
Zool Stud ; 61: e57, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36644628

RESUMEN

The identities of most arthropod associates of cynipid-induced oak galls in the western Palearctic are generally known. However, a comprehensive accounting of associates has been performed for only a small number of the galls induced by the estimated 700 species of cynipid gall wasps in the Nearctic. This gap in knowledge stymies many potential studies of diversity, coevolution, and community ecology, for which oak gall systems are otherwise ideal models. We report rearing records of insects and other arthropods from more than 527,306 individual galls representing 201 different oak gall types collected from 32 oak tree species in North America. Of the 201 gall types collected, 155 produced one or more arthropods. A total of 151,075 arthropods were found in association with these 155 gall types, and of these 61,044 (40.4%) were gall wasps while 90,031 (59.6%) were other arthropods. We identified all arthropods to superfamily, family, or, where possible, to genus. We provide raw numbers and summaries of collections, alongside notes on natural history, ecology, and previously published associations for each taxon. For eight common gall-associated genera (Synergus, Ceroptres, Euceroptres, Ormyrus, Torymus, Eurytoma, Sycophila, and Euderus), we also connect rearing records to gall wasp phylogeny, geography, and ecology -including host tree and gall location (host organ), and their co-occurrence with other insect genera. Though the diversity of gall wasps and the large size of these communities is such that many Nearctic oak gall-associated insects still remain undescribed, this large collection and identification effort should facilitate the testing of new and varied ecological and evolutionary hypotheses in Nearctic oak galls.

7.
Dalton Trans ; 50(47): 17625-17634, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34806099

RESUMEN

A series of amine bisphenol (ABP) pro-ligands featuring amino acid ester pendant arms were prepared. Optimisation of the synthetic method allowed the facile incorporation of naturally occurring, chiral amino acids into the ABP scaffold with minimal racemisation. Reaction of the pro-ligands (LH2) with Pd(OAc)2, in the presence of amines, led to the formation of complexes with an unprecedented pincer-like O,N,O coordination mode around the PdII centre. The complexations in the presence of trialkylamines (NR3) afforded a mixture of LPdNR3 and LPdNHR2 species. The latter was shown to form via an ambient-temperature C-N cleavage involving unstable Pd(OAc)2(NHR2)2 intermediates. Using pyridine as base eliminated this dealkylation and resulted in the exclusive formation of LPd(py) complexes in high yields. In total, seven novel PdII ABP complexes were prepared, exhibiting distorted square-planar geometries with the asymmetric ligand moieties orientated towards the metal centre. The air- and moisture-stable LPd(py) complexes were successfully employed as catalysts in two types of C-C coupling reactions. The Suzuki-Miyaura coupling of 4'-bromoacetophenone and phenylboronic acid reached high yields (up to 81%), while a scope of further alkyl bromides was also efficiently converted using low catalyst loadings (1 mol%) and mild temperatures (40 °C). Furthermore, a Pd-pyridine complex achieved high activity in the Mizoroki-Heck coupling of styrene and 4'-bromoacetophenone.

8.
Environ Entomol ; 50(5): 1173-1186, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34387323

RESUMEN

Parasitoids comprise a speciose insect group, displaying a wide array of life history strategies. In the Pacific Northwest of the United States, the tephritid fruit flies Rhagoletis tabellaria (Fitch) and Rhagoletis indifferens Curran infest red osier dogwood, Cornus sericea L. (Cornaceae), and bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton (Rosaceae), respectively. The flies are parasitized by different braconid wasps at different life stages; Utetes tabellariae (Fischer) oviposits into R. tabellaria eggs, whereas Diachasma muliebre (Muesebeck) oviposits into R. indifferens larvae feeding in cherries. Because Rhagoletis only have one major generation a year and the wasps attack temporally distinct fly life stages, we predicted that eclosion times of U. tabellariae should more closely follow that of its host than the larval-attacking D. muliebre. As predicted, U. tabellariae eclosed on average 6.0-12.5 d later than R. tabellaria, whereas D. muliebre eclosed on average 32.1 d after R. indifferens. Unexpectedly, however, longer chill duration differentially affected the systems; longer overwinters minimally influenced eclosion times of R. tabellaria and U. tabellariae but caused earlier eclosion of both R. indifferens and D. muliebre. Results imply that in temperate regions, diapause timing in braconid wasps evolves in response to both host life stage attacked and fly eclosion characteristics, possibly reflecting differential effects of winter on host plant fruiting phenology. Differences in phenological sensitivity of the lower host plant trophic level to variation in environmental conditions may have cascading effects, sequentially and differentially affecting eclosion times in higher frugivore (fly) and parasitoid (wasp) trophic levels.


Asunto(s)
Tephritidae , Avispas , Animales , Larva , América del Norte , Óvulo
9.
J Evol Biol ; 34(2): 364-379, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33190382

RESUMEN

Congeneric parasites are unlikely to specialize on the same tissues of the same host species, likely because of strong multifarious selection against niche overlap. Exceptions where >1 congeneric species use the same tissues reveal important insights into ecological factors underlying the origins and maintenance of diversity. Larvae of sunflower maggot flies in the genus Strauzia feed on plants in the family Asteraceae. Although Strauzia tend to be host specialists, some species specialize on the same hosts. To resolve the origins of host sharing among these specialist flies, we used reduced representation genomic sequencing to infer the first multilocus phylogeny of genus Strauzia. Our results show that Helianthus tuberosus and Helianthus grosseserratus each host three different Strauzia species and that the flies co-occurring on a host are not one another's closest relatives. Though this pattern implies that host sharing is most likely the result of host shifts, these may not all be host shifts in the conventional sense of an insect moving onto an entirely new plant. Many hosts of Strauzia belong to a clade of perennial sunflowers that arose 1-2 MYA and are noted for frequent introgression and hybrid speciation events. Our divergence time estimates for all of the Helianthus-associated Strauzia are within this same time window (<1 MYA), suggesting that rapid and recent adaptive introgression and speciation in Helianthus may have instigated the diversification of Strauzia, with some flies converging upon a single plant host after their respective ancestral host plants hybridized to form a new sunflower species.


Asunto(s)
Especiación Genética , Helianthus , Herbivoria , Filogenia , Tephritidae/genética , Animales , Larva/fisiología
10.
Zookeys ; 985: 49-60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33223874

RESUMEN

A new species of the parasitic wasp Coptera Say was previously distinguished from other species via correspondence between ecological (host) differences and DNA barcodes. A description and figures for Coptera tonic sp. nov., along with revisions to existing keys that allow it to be distinguished from other Nearctic species without the aid of molecular characters, is provided in this work.

11.
Biol Lett ; 15(9): 20190428, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31551066

RESUMEN

Parasites of animals and plants can encounter trade-offs between their specificity to any single host and their fitness on alternative hosts. For parasites that manipulate their host's behaviour, the added complexity of that manipulation may further limit the parasite's host range. However, this is rarely tested. The recently described crypt-keeper wasp, Euderus set, changes the behaviour of the gall wasp Bassettia pallida such that B. pallida chews a significantly smaller exit hole in the side of its larval chamber and 'plugs' that hole with its head before dying. Euderus set benefits from this head plug, as it facilitates the escape of the parasitoid from the crypt after it completes development. Here, we find direct and indirect evidence that E. set attacks and manipulates the behaviour of at least six additional gall wasp species, and that these hosts are taxonomically diverse. Interestingly, each of E. set's hosts has converged upon similarities in their extended phenotypes: the galls they induce on oaks share characters that may make them vulnerable to attack by E. set. The specialization required to behaviourally manipulate hosts may be less important in determining the range of hosts in this parasitoid system than other dimensions of the host-parasitoid interaction, like the host's physical defences.


Asunto(s)
Parásitos , Quercus , Avispas , Animales , Interacciones Huésped-Parásitos , Larva
12.
Genome Biol Evol ; 11(10): 2767-2773, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553440

RESUMEN

Parasitoid wasps are among the most speciose animals, yet have relatively few available genomic resources. We report a draft genome assembly of the wasp Diachasma alloeum (Hymenoptera: Braconidae), a host-specific parasitoid of the apple maggot fly Rhagoletis pomonella (Diptera: Tephritidae), and a developing model for understanding how ecological speciation can "cascade" across trophic levels. Identification of gene content confirmed the overall quality of the draft genome, and we manually annotated ∼400 genes as part of this study, including those involved in oxidative phosphorylation, chemosensation, and reproduction. Through comparisons to model hymenopterans such as the European honeybee Apis mellifera and parasitoid wasp Nasonia vitripennis, as well as a more closely related braconid parasitoid Microplitis demolitor, we identified a proliferation of transposable elements in the genome, an expansion of chemosensory genes in parasitoid wasps, and the maintenance of several key genes with known roles in sexual reproduction and sex determination. The D. alloeum genome will provide a valuable resource for comparative genomics studies in Hymenoptera as well as specific investigations into the genomic changes associated with ecological speciation and transitions to asexuality.


Asunto(s)
Genoma de los Insectos , Avispas/genética , Animales , Femenino , Genes de Insecto , Especiación Genética , Himenópteros/genética , Masculino , Modelos Biológicos , Reproducción Asexuada/genética , Procesos de Determinación del Sexo
13.
Curr Opin Insect Sci ; 31: 77-83, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-31109677

RESUMEN

Boasting a staggering diversity of reproductive strategies, insects provide attractive models for the comparative study of the causes and consequences of transitions to asexuality. We provide an overview of some contemporary studies of reproductive systems in insects and compile an initial database of asexual insect genome resources. Insect systems have already yielded some important insights into various mechanisms by which sex is lost, including genetic, endosymbiont-mediated, and hybridization. Studies of mutation and substitution after loss of sex provide the strongest empirical support for hypothesized effects of asexuality, whereas there is mixed evidence for ecological hypotheses such as increased parasite load and altered niche breadth in asexuals. Most hypotheses have been explored in a select few taxa (e.g. stick insects, aphids), such that much of the great taxonomic breadth of insects remain understudied. Given the variation in the proximate causes of asexuality in insects, we argue for expanding the taxonomic breadth of study systems. Despite some challenges for investigating sex in insects, the increasing cost-effectiveness of genomic sequencing makes data generation for closely-related asexual and sexual lineages increasingly feasible.


Asunto(s)
Insectos/genética , Insectos/fisiología , Reproducción Asexuada/genética , Animales , Femenino , Hibridación Genética , Masculino , Partenogénesis , Simbiosis
14.
BMC Ecol ; 18(1): 21, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30001194

RESUMEN

BACKGROUND: We challenge the oft-repeated claim that the beetles (Coleoptera) are the most species-rich order of animals. Instead, we assert that another order of insects, the Hymenoptera, is more speciose, due in large part to the massively diverse but relatively poorly known parasitoid wasps. The idea that the beetles have more species than other orders is primarily based on their respective collection histories and the relative availability of taxonomic resources, which both disfavor parasitoid wasps. Though it is unreasonable to directly compare numbers of described species in each order, the ecology of parasitic wasps-specifically, their intimate interactions with their hosts-allows for estimation of relative richness. RESULTS: We present a simple logical model that shows how the specialization of many parasitic wasps on their hosts suggests few scenarios in which there would be more beetle species than parasitic wasp species. We couple this model with an accounting of what we call the "genus-specific parasitoid-host ratio" from four well-studied genera of insect hosts, a metric by which to generate extremely conservative estimates of the average number of parasitic wasp species attacking a given beetle or other insect host species. CONCLUSIONS: Synthesis of our model with data from real host systems suggests that the Hymenoptera may have 2.5-3.2× more species than the Coleoptera. While there are more described species of beetles than all other animals, the Hymenoptera are almost certainly the larger order.


Asunto(s)
Biodiversidad , Escarabajos , Interacciones Huésped-Parásitos , Himenópteros , Animales , Rasgos de la Historia de Vida , Modelos Biológicos , Filogenia
15.
BMC Evol Biol ; 18(1): 30, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540154

RESUMEN

BACKGROUND: Much evolutionary theory predicts that diversity arises via both adaptive radiation (diversification driven by selection against niche-overlap within communities) and divergence of geographically isolated populations. We focus on tropical fruit flies (Blepharoneura, Tephritidae) that reveal unexpected patterns of niche-overlap within local communities. Throughout the Neotropics, multiple sympatric non-interbreeding populations often share the same highly specialized patterns of host use (e.g., flies are specialists on flowers of a single gender of a single species of host plants). Lineage through time (LTT) plots can help distinguish patterns of diversification consistent with ecologically limited adaptive radiation from those predicted by ecologically neutral theories. Here, we use a time-calibrated phylogeny of Blepharoneura to test the hypothesis that patterns of Blepharoneura diversification are consistent with an "ecologically neutral" model of diversification that predicts that diversification is primarily a function of time and space. RESULTS: The Blepharoneura phylogeny showed more cladogenic divergence associated with geography than with shifts in host-use. Shifts in host-use were associated with ~ 20% of recent splits (< 3 Ma), but > 60% of older splits (> 3 Ma). In the overall tree, gamma statistic and maximum likelihood model fitting showed no evidence of diversification rate changes though there was a weak signature of slowing diversification rate in one of the component clades. CONCLUSIONS: Overall patterns of Blepharoneura diversity are inconsistent with a traditional explanation of adaptive radiation involving decreases in diversification rates associated with niche-overlap. Sister lineages usually use the same host-species and host-parts, and multiple non-interbreeding sympatric populations regularly co-occur on the same hosts. We suggest that most lineage origins (phylogenetic splits) occur in allopatry, usually without shifts in host-use, and that subsequent dispersal results in assembly of communities composed of multiple sympatric non-interbreeding populations of flies that share the same hosts.


Asunto(s)
Tephritidae/clasificación , Tephritidae/genética , Animales , Biodiversidad , Evolución Biológica , Ecología , Flores , Especiación Genética , Geografía , Herbivoria , Funciones de Verosimilitud , Filogenia , Plantas , Simpatría
16.
J Hered ; 108(7): 791-806, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-28992199

RESUMEN

The cellular mechanisms of meiosis are critical for proper gamete formation in sexual organisms. Functional studies in model organisms have identified genes essential for meiosis, yet the extent to which this core meiotic machinery is conserved across non-model systems is not fully understood. Moreover, it is unclear whether deviation from canonical modes of sexual reproduction is accompanied by modifications in the genetic components involved in meiosis. We used a robust approach to identify and catalogue meiosis genes in Hymenoptera, an insect order typically characterized by haplodiploid reproduction. Using newly available genome data, we searched for 43 genes involved in meiosis in 18 diverse hymenopterans. Seven of eight genes with roles specific to meiosis were found across a majority of surveyed species, suggesting the preservation of core meiotic machinery in haplodiploid hymenopterans. Phylogenomic analyses of the inventory of meiosis genes and the identification of shared gene duplications and losses provided support for the grouping of species within Proctotrupomorpha, Ichneumonomorpha, and Aculeata clades, along with a paraphyletic Symphyta. The conservation of meiosis genes across Hymenoptera provides a framework for studying transitions between reproductive modes in this insect group.


Asunto(s)
Genes de Insecto , Himenópteros/genética , Meiosis/genética , Animales , Evolución Molecular , Duplicación de Gen , Filogenia
17.
Zookeys ; (645): 37-49, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28228666

RESUMEN

A new species of the genus Euderus Haliday, Euderus setsp. n., is described and illustrated from the southeastern United States, where it parasitizes the crypt gall wasp, Bassettia pallida Ashmead, 1896, on live oaks in the genus Quercus (subsection Virentes). This is the 1st species of the genus reported from the southeastern United States to parasitize cynipid gall wasps and the 3rd species of the genus reported to attack cynipids in North America. Modified sections of the identification keys to subgenera and species of Euderus (Yoshimoto, 1971) are included to integrate the new species.

18.
Proc Biol Sci ; 284(1847)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28123089

RESUMEN

There are many examples of apparent manipulation of host phenotype by parasites, yet few examples of hypermanipulation-where a phenotype-manipulating parasite is itself manipulated by a parasite. Moreover, few studies confirm manipulation is occurring by quantifying whether the host's changed phenotype increases parasite fitness. Here we describe a novel case of hypermanipulation, in which the crypt gall wasp Bassettia pallida (a phenotypic manipulator of its tree host) is manipulated by the parasitoid crypt-keeper wasp Euderus set, and show that the host's changed behaviour increases parasitoid fitness. Bassettia pallida parasitizes sand live oaks and induces the formation of a 'crypt' within developing stems. When parasitized by E. set, B. pallida adults excavate an emergence hole in the crypt wall, plug the hole with their head and die. We show experimentally that this phenomenon benefits E. set, as E. set that need to excavate an emergence hole themselves are about three times more likely to die trapped in the crypt. In addition, we discuss museum and field data to explore the distribution of the crypt-keeping phenomena.


Asunto(s)
Interacciones Huésped-Parásitos , Quercus/parasitología , Avispas , Animales
19.
Evolution ; 71(5): 1126-1137, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28052326

RESUMEN

The notion that shifts to new hosts can initiate insect speciation is more than 150 years old, yet widespread conflation with paradigms of sympatric speciation has led to confusion about how much support exists for this hypothesis. Here, we review 85 insect systems and evaluate the relationship between host shifting, reproductive isolation, and speciation. We sort insects into five categories: (1) systems in which a host shift has initiated speciation; (2) systems in which a host shift has made a contribution to speciation; (3) systems in which a host shift has caused the evolution of new reproductive isolating barriers; (4) systems with host-associated genetic differences; and (5) systems with no evidence of host-associated genetic differences. We find host-associated genetic structure in 65 systems, 43 of which show that host shifts have resulted in the evolution of new reproductive barriers. Twenty-six of the latter also support a role for host shifts in speciation, including eight studies that definitively support the hypothesis that a host shift has initiated speciation. While this review is agnostic as to the fraction of all insect speciation events to which host shifts have contributed, it clarifies that host shifts absolutely can and do initiate speciation.


Asunto(s)
Especiación Genética , Insectos , Animales , Reproducción , Aislamiento Reproductivo , Especificidad de la Especie , Simpatría
20.
Proc Natl Acad Sci U S A ; 112(44): E5980-9, 2015 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-26499247

RESUMEN

Phenotypic and genetic variation in one species can influence the composition of interacting organisms within communities and across ecosystems. As a result, the divergence of one species may not be an isolated process, as the origin of one taxon could create new niche opportunities for other species to exploit, leading to the genesis of many new taxa in a process termed "sequential divergence." Here, we test for such a multiplicative effect of sequential divergence in a community of host-specific parasitoid wasps, Diachasma alloeum, Utetes canaliculatus, and Diachasmimorpha mellea (Hymenoptera: Braconidae), that attack Rhagoletis pomonella fruit flies (Diptera: Tephritidae). Flies in the R. pomonella species complex radiated by sympatrically shifting and ecologically adapting to new host plants, the most recent example being the apple-infesting host race of R. pomonella formed via a host plant shift from hawthorn-infesting flies within the last 160 y. Using population genetics, field-based behavioral observations, host fruit odor discrimination assays, and analyses of life history timing, we show that the same host-related ecological selection pressures that differentially adapt and reproductively isolate Rhagoletis to their respective host plants (host-associated differences in the timing of adult eclosion, host fruit odor preference and avoidance behaviors, and mating site fidelity) cascade through the ecosystem and induce host-associated genetic divergence for each of the three members of the parasitoid community. Thus, divergent selection at lower trophic levels can potentially multiplicatively and rapidly amplify biodiversity at higher levels on an ecological time scale, which may sequentially contribute to the rich diversity of life.


Asunto(s)
Avispas/fisiología , Animales , ADN Mitocondrial/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Avispas/clasificación , Avispas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA