Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 17(8): 5369-5378, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34232642

RESUMEN

The halogen bond (or X-bond) is a noncovalent interaction that is increasingly recognized as an important design tool for engineering protein-ligand interactions and controlling the structures of proteins and nucleic acids. In the past decade, there have been significant efforts to characterize the structure-energy relationships of this interaction in macromolecules. Progress in the computational modeling of X-bonds in biological molecules, however, has lagged behind these experimental studies, with most molecular mechanics/dynamics-based simulation methods not properly treating the properties of the X-bond. We had previously derived a force field for biological X-bonds (ffBXB) based on a set of potential energy functions that describe the anisotropic electrostatic and shape properties of halogens participating in X-bonds. Although fairly accurate for reproducing the energies within biomolecular systems, including X-bonds engineered into a DNA junction, the ffBXB with its seven variable parameters was considered to be too unwieldy for general applications. In the current study, we have generalized the ffBXB by reducing the number of variables to just one for each halogen type and show that this remaining electrostatic variable can be estimated for any new halogenated molecule through a standard restricted electrostatic potential calculation of atomic charges. In addition, we have generalized the ffBXB for both nucleic acids and proteins. As a proof of principle, we have parameterized this reduced and more general ffBXB against the AMBER force field. The resulting parameter set was shown to accurately recapitulate the quantum mechanical landscape and experimental interaction energies of X-bonds incorporated into DNA junction and T4 lysozyme model systems. Thus, this reduced and generalized ffBXB is more readily adaptable for incorporation into classical molecular mechanics/dynamics algorithms, including those commonly used to design inhibitors against therapeutic targets in medicinal chemistry and materials in biomolecular engineering.


Asunto(s)
Halógenos/química , ADN/química , ADN/metabolismo , Modelos Moleculares , Muramidasa/química , Muramidasa/metabolismo , Teoría Cuántica , Electricidad Estática , Termodinámica
2.
Biochemistry ; 57(28): 4135-4147, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29921126

RESUMEN

The construction of more stable proteins is important in biomolecular engineering, particularly in the design of biologics-based therapeutics. We show here that replacing the tyrosine at position 18 (Y18) of T4 lysozyme with the unnatural amino acid m-chlorotyrosine ( mClY) increases both the thermal stability (increasing the melting temperature by ∼1 °C and the melting enthalpy by 3 kcal/mol) and the enzymatic activity at elevated temperatures (15% higher than that of the parent enzyme at 40 °C) of this classic enzyme. The chlorine of mClY forms a halogen bond (XB) to the carbonyl oxygen of the peptide bond at glycine 28 (G28) in a tight loop near the active site. In this case, the XB potential of the typically weak XB donor Cl is shown from quantum chemical calculations to be significantly enhanced by polarization via an intramolecular hydrogen bond (HB) from the adjacent hydroxyl substituent of the tyrosyl side chain, resulting in a distinctive synergistic HB-enhanced XB (or HeX-B for short) interaction. The larger halogens (bromine and iodine) are not well accommodated within this same loop and, consequently, do not exhibit the effects on protein stability or function associated with the HeX-B interaction. Thus, we have for the first time demonstrated that an XB can be engineered to stabilize and increase the activity of an enzyme, with the increased stabilizing potential of the HeX-B further extending the application of halogenated amino acids in the design of more stable protein therapeutics.


Asunto(s)
Bacteriófago T4/enzimología , Muramidasa/química , Tirosina/análogos & derivados , Bacteriófago T4/química , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Estabilidad de Enzimas , Calor , Enlace de Hidrógeno , Modelos Moleculares , Muramidasa/genética , Muramidasa/metabolismo , Mutagénesis Sitio-Dirigida , Termodinámica , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
3.
J Phys Chem Lett ; 8(17): 4246-4252, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28796521

RESUMEN

The halogen bond (X-bond) has become an important design element in chemistry, including medicinal chemistry and biomolecular engineering. Although oxygen is the most prevalent and best characterized X-bond acceptor in biomolecules, the interaction is seen with nitrogen, sulfur, and aromatic systems as well. In this study, we characterize the structure and thermodynamics of a Br···S X-bond between a 5-bromouracil base and a phosphorothioate in a model DNA junction. The single-crystal structure of the junction shows the geometry of the Br···S to be variable, while calorimetric studies show that the anionic S acceptor is comparable to or slightly more stable than the analogous O acceptor, with a -3.5 kcal/mol difference in ΔΔH25°C and -0.4 kcal/mol ΔΔG25°C (including an entropic penalty ΔΔS25°C of -10 cal/(mol K)). Thus sulfur is shown to be a favorable acceptor for bromine X-bonds, extending the application of this interaction for the design of inhibitors and biological materials.


Asunto(s)
ADN/química , Halógenos/química , Bromo , Entropía , Modelos Moleculares , Azufre , Termodinámica
4.
J Chem Inf Model ; 57(6): 1276-1285, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28520421

RESUMEN

The importance of engineering protein stability is well-known and has the potential to impact many fields ranging from pharmaceuticals to food sciences. Engineering proteins can be both a time-consuming and expensive experimental process. The use of computation is a potential solution to mitigating some of the time and expenses required to engineer a protein. This process has been previously hindered by inaccurate force fields or energy equations and slow computational processors; however, improved software and hardware have made this goal much more attainable. Here we find that Schrödinger's new FEP+, although still imperfect, proves more successful in predicting protein stability than other simpler methods of investigation. This increased accuracy comes at a cost of computational time and resources when compared to simpler methods. This work adds to the initial testing of FEP+ by offering options for more accurately predicting protein stability in an efficient manner.


Asunto(s)
Biología Computacional/métodos , Estabilidad Proteica , Estudios de Factibilidad , Nucleasa Microcócica/química , Nucleasa Microcócica/genética , Nucleasa Microcócica/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Termodinámica
5.
Biochemistry ; 56(22): 2794-2802, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28345933

RESUMEN

The structures and stabilities of proteins are defined by a series of weak noncovalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent noninteracting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various noncovalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.


Asunto(s)
Halógenos/química , Proteínas/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Conformación Proteica , Teoría Cuántica
6.
J Med Chem ; 59(5): 1655-70, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26465079

RESUMEN

The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.


Asunto(s)
Química Farmacéutica , Halógenos/química , Modelos Moleculares , Descubrimiento de Drogas , Humanos , Teoría Cuántica
7.
J Phys Chem B ; 119(29): 9140-9, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25338128

RESUMEN

The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry--its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as an accurate computational tool that can be applied, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular-based materials.


Asunto(s)
Halógenos/química , Modelos Moleculares , ADN/química , Modelos Genéticos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA