Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 8(1): 58, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080988

RESUMEN

Zika virus (ZIKV), an arbovirus transmitted by mosquitoes, was identified as a cause of congenital disease during a major outbreak in the Americas in 2016. Vaccine design strategies relied on limited available isolate sequence information due to the rapid response necessary. The first-generation ZIKV mRNA vaccine, mRNA-1325, was initially generated and, as additional strain sequences became available, a second mRNA vaccine, mRNA-1893, was developed. Herein, we compared the immune responses following mRNA-1325 and mRNA-1893 vaccination and reported that mRNA-1893 generated comparable neutralizing antibody titers to mRNA-1325 at 1/20th of the dose and provided complete protection from ZIKV challenge in non-human primates. In-depth characterization of these vaccines indicated that the observed immunologic differences could be attributed to a single amino acid residue difference that compromised mRNA-1325 virus-like particle formation.

2.
Nat Commun ; 14(1): 1130, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854666

RESUMEN

SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , COVID-19/prevención & control , Papio , SARS-CoV-2/genética , Vacunas/química , Vacunas/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología
3.
J Infect Dis ; 224(9): 1550-1555, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33961055

RESUMEN

Zika virus (ZIKV) deoxyribonucleic acid vaccine VRC5283 encoding viral structural genes has been shown to be immunogenic in humans. Recognizing that antigenically related flaviviruses cocirculate in regions with ZIKV activity, we explored the degree of antibody cross-reactivity elicited by this vaccine candidate using genetically diverse flaviviruses. The antibody response of vaccinated individuals with no evidence of prior flavivirus infection or vaccine experience had a limited capacity to bind heterologous viruses. In contrast, vaccine-elicited antibodies from individuals with prior flavivirus experience had a greater capacity to bind, but not neutralize, distantly related flaviviruses. These findings suggest that prior flavivirus exposure shapes the humoral immune response to vaccination.


Asunto(s)
Anticuerpos Neutralizantes , Flavivirus , Vacunas de ADN , Infección por el Virus Zika , Virus Zika , Anticuerpos Antivirales , Formación de Anticuerpos , Reacciones Cruzadas , Flavivirus/genética , Flavivirus/inmunología , Humanos , Pruebas de Neutralización , Plásmidos , Vacunas , Virus Zika/genética , Virus Zika/inmunología , Infección por el Virus Zika/prevención & control
4.
Sci Adv ; 6(32): eaba5068, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32821824

RESUMEN

Zika virus (ZIKV) is the cause of a pandemic associated with microcephaly in newborns and Guillain-Barre syndrome in adults. Currently, there are no available treatments or vaccines for ZIKV, and the development of a safe and effective vaccine is a high priority for many global health organizations. We describe the development of ZIKV vaccine candidates using the self-amplifying messenger RNA (SAM) platform technology delivered by cationic nanoemulsion (CNE) that allows bedside mixing and is particularly useful for rapid responses to pandemic outbreaks. Two immunizations of either of the two lead SAM (CNE) vaccine candidates elicited potent neutralizing antibody responses to ZIKV in mice and nonhuman primates. Both SAM (CNE) vaccines protected these animals from ZIKV challenge, with one candidate providing complete protection against ZIKV infection in nonhuman primates. The data provide a preclinical proof of concept that a SAM (CNE) vaccine candidate can rapidly elicit protective immunity against ZIKV.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Antivirales , Ratones , ARN Mensajero/genética , Virus Zika/genética , Infección por el Virus Zika/prevención & control
5.
Sci Transl Med ; 12(547)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32522807

RESUMEN

The emergence of Zika virus (ZIKV) in the Americas stimulated the development of multiple ZIKV vaccine candidates. We previously developed two related DNA vaccine candidates encoding ZIKV structural proteins that were immunogenic in animal models and humans. We sought to identify neutralizing antibody (NAb) properties induced by each vaccine that correlated with protection in nonhuman primates (NHPs). Despite eliciting equivalent NAb titers in NHPs, these vaccines were not equally protective. The transfer of equivalent titers of vaccine-elicited NAb into AG129 mice also revealed nonequivalent protection, indicating qualitative differences among antibodies (Abs) elicited by these vaccines. Both vaccines elicited Abs with similar binding titers against envelope protein monomers and those incorporated into virus-like particles, as well as a comparable capacity to orchestrate phagocytosis. Functional analysis of vaccine-elicited NAbs from NHPs and humans revealed a capacity to neutralize the structurally mature form of the ZIKV virion that varied in magnitude among vaccine candidates. Conversely, sensitivity to the virion maturation state was not a characteristic of NAbs induced by natural or experimental infection. Passive transfer experiments in mice revealed that neutralization of mature ZIKV virions more accurately predicts protection from ZIKV infection. These findings demonstrate that NAb correlates of protection may differ among vaccine antigens when assayed using standard neutralization platforms and suggest that measurements of Ab quality, including the capacity to neutralize mature virions, will be critical for defining correlates of ZIKV vaccine-induced immunity.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ratones , Infección por el Virus Zika/prevención & control
6.
Sci Transl Med ; 11(523)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852797

RESUMEN

Zika virus (ZIKV) infection of pregnant women is associated with congenital Zika syndrome (CZS) and no vaccine is available, although several are being tested in clinical trials. We tested the efficacy of ZIKV DNA vaccine VRC5283 in a rhesus macaque model of congenital ZIKV infection. Most animal vaccine experiments have a set pathogen exposure several weeks or months after vaccination. In the real world, people encounter pathogens years or decades after vaccination, or may be repeatedly exposed if the virus is endemic. To more accurately mimic how this vaccine would be used, we immunized macaques before conception and then exposed them repeatedly to ZIKV during early and mid-gestation. In comparison to unimmunized animals, vaccinated animals had a significant reduction in peak magnitude and duration of maternal viremia, early fetal loss, fetal infection, and placental and fetal brain pathology. Vaccine-induced neutralizing antibody titers on the day of first ZIKV exposure were negatively associated with the magnitude of maternal viremia, and the absence of prolonged viremia was associated with better fetal outcomes. These data support further clinical development of ZIKV vaccine strategies to protect against negative fetal outcomes.


Asunto(s)
Vacunación/métodos , Vacunas de ADN/uso terapéutico , Infección por el Virus Zika/prevención & control , Animales , Anticuerpos Neutralizantes/metabolismo , Femenino , Macaca mulatta , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/prevención & control , Viremia/inmunología , Viremia/prevención & control , Virus Zika/inmunología , Virus Zika/patogenicidad
7.
J Infect Dis ; 220(10): 1577-1588, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31260518

RESUMEN

Zika virus (ZIKV) caused an epidemic of congenital malformations in 2015-2016. Although many vaccine candidates have been generated, few have demonstrated efficacy against congenital ZIKV infection. Here, we evaluated lipid-encapsulated messenger RNA (mRNA) vaccines and a DNA plasmid vaccine encoding the prM-E genes of ZIKV in mouse models of congenital infection. Although the DNA vaccine provided comparable efficacy against vertical transmission of ZIKV, the mRNA vaccines, including one that minimizes antibody-dependent enhancement of infection, elicited higher levels of antigen-specific long-lived plasma cells and memory B cells. Despite the induction of robust neutralizing antibody titers by all vaccines, breakthrough seeding of the placenta and fetal head was observed in a small subset of type I interferon signaling-deficient immunocompromised dams. In comparison, evaluation of one of the mRNA vaccines in a human STAT2-knockin transgenic immunocompetent mouse showed complete protection against congenital ZIKV transmission. These data will inform ongoing human ZIKV vaccine development efforts and enhance our understanding of the correlates of vaccine-induced protection.


Asunto(s)
Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Plasmáticas/inmunología , Embarazo , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación
8.
Cell Rep ; 25(12): 3382-3392.e3, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566864

RESUMEN

Powassan virus (POWV) is an emerging tick-transmitted flavivirus that circulates in North America and Russia. Up to 5% of deer ticks now test positive for POWV in certain regions of the northern United States. Although POWV infections cause life-threatening encephalitis, there is no vaccine or countermeasure available for prevention or treatment. Here, we developed a lipid nanoparticle (LNP)-encapsulated modified mRNA vaccine encoding the POWV prM and E genes and demonstrated its immunogenicity and efficacy in mice following immunization with one or two doses. The POWV mRNA vaccine induced high titers of neutralizing antibody and sterilizing immunity against lethal challenge with different POWV strains. The mRNA vaccine also induced cross-neutralizing antibodies against multiple other tick-borne flaviviruses and protected mice against the distantly related Langat virus. These data demonstrate the utility of the LNP-mRNA vaccine platform for the development of vaccines with protective activity against multiple flaviviruses.


Asunto(s)
Infecciones por Flavivirus/prevención & control , Infecciones por Flavivirus/parasitología , Ixodes/fisiología , ARN Mensajero/inmunología , Vacunas Virales/inmunología , Animales , Modelos Animales de Enfermedad , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Lípidos/química , Ratones Endogámicos C57BL , Nanopartículas/química , Pruebas de Neutralización , Filogenia , Vacunación
9.
Lancet ; 391(10120): 552-562, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29217376

RESUMEN

BACKGROUND: The Zika virus epidemic and associated congenital infections have prompted rapid vaccine development. We assessed two new DNA vaccines expressing premembrane and envelope Zika virus structural proteins. METHODS: We did two phase 1, randomised, open-label trials involving healthy adult volunteers. The VRC 319 trial, done in three centres, assessed plasmid VRC5288 (Zika virus and Japanese encephalitis virus chimera), and the VRC 320, done in one centre, assessed plasmid VRC5283 (wild-type Zika virus). Eligible participants were aged 18-35 years in VRC19 and 18-50 years in VRC 320. Participants were randomly assigned 1:1 by a computer-generated randomisation schedule prepared by the study statistician. All participants received intramuscular injection of 4 mg vaccine. In VRC 319 participants were assigned to receive vaccinations via needle and syringe at 0 and 8 weeks, 0 and 12 weeks, 0, 4, and 8 weeks, or 0, 4, and 20 weeks. In VRC 320 participants were assigned to receive vaccinations at 0, 4, and 8 weeks via single-dose needle and syringe injection in one deltoid or split-dose needle and syringe or needle-free injection with the Stratis device (Pharmajet, Golden, CO, USA) in each deltoid. Both trials followed up volunteers for 24 months for the primary endpoint of safety, assessed as local and systemic reactogenicity in the 7 days after each vaccination and all adverse events in the 28 days after each vaccination. The secondary endpoint in both trials was immunogenicity 4 weeks after last vaccination. These trials are registered with ClinicalTrials.gov, numbers NCT02840487 and NCT02996461. FINDINGS: VRC 319 enrolled 80 participants (20 in each group), and VRC 320 enrolled 45 participants (15 in each group). One participant in VRC 319 and two in VRC 320 withdrew after one dose of vaccine, but were included in the safety analyses. Both vaccines were safe and well tolerated. All local and systemic symptoms were mild to moderate. In both studies, pain and tenderness at the injection site was the most frequent local symptoms (37 [46%] of 80 participants in VRC 319 and 36 [80%] of 45 in VRC 320) and malaise and headache were the most frequent systemic symptoms (22 [27%] and 18 [22%], respectively, in VRC 319 and 17 [38%] and 15 [33%], respectively, in VRC 320). For VRC5283, 14 of 14 (100%) participants who received split-dose vaccinations by needle-free injection had detectable positive antibody responses, and the geometric mean titre of 304 was the highest across all groups in both trials. INTERPRETATION: VRC5283 was well tolerated and has advanced to phase 2 efficacy testing. FUNDING: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Virus Zika/inmunología , Adulto , Citocinas/biosíntesis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Vacunas de ADN/efectos adversos , Vacunas Virales/efectos adversos , Adulto Joven , Infección por el Virus Zika/prevención & control
10.
Cell ; 170(2): 273-283.e12, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28708997

RESUMEN

The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.


Asunto(s)
Vacunas Virales/administración & dosificación , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/fisiología , Aedes/virología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células Sanguíneas/virología , Embrión de Mamíferos/virología , Femenino , Feto/virología , Humanos , Lípidos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , ARN Mensajero/genética , ARN Mensajero/inmunología , Organismos Libres de Patógenos Específicos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...