Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37034750

RESUMEN

The role of reactive iron in Alzheimer's Disease (AD) remains unresolved. Little is known of how AD may alter iron transport, glutathione-mediated oxidative repair, and their associations with ApoE alleles. Postmortem brain intravascular blood was minimized by washing minced brain (n=24/group). HNE from iron-associated lipid peroxidation increased in AD prefrontal cortex by 50% for whole tissue and in subcellular lipid rafts, where Aß-peptides are produced. HNE correlated with iron storage ferritin light chain (FTL; r=0.35); both were higher in ApoE4. Iron chelation by DFO in EFAD mice decreased HNE consistent with ferroptosis. Neuronal and synaptic loss in AD was inversely correlated to FTL (r=-0.55). AD decreased levels of ferroptosis suppressor protein 1, glutamate cysteine ligase modulator subunit (GCLM), and lipid raft glutathione peroxidase 4 (GPx4), mitigators of ferroptosis. These findings provide a mechanistic framework for iron-associated neurodegeneration during AD by impaired lipid peroxidation repair mechanisms involving glutathione.

2.
Metallomics ; 14(10)2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36208212

RESUMEN

Understanding the nanoscale chemical speciation of heterogeneous systems in their native environment is critical for several disciplines such as life and environmental sciences, biogeochemistry, and materials science. Synchrotron-based X-ray spectromicroscopy tools are widely used to understand the chemistry and morphology of complex material systems owing to their high penetration depth and sensitivity. The multidimensional (4D+) structure of spectromicroscopy data poses visualization and data-reduction challenges. This paper reports the strategies for the visualization and analysis of spectromicroscopy data. We created a new graphical user interface and data analysis platform named XMIDAS (X-ray multimodal image data analysis software) to visualize spectromicroscopy data from both image and spectrum representations. The interactive data analysis toolkit combined conventional analysis methods with well-established machine learning classification algorithms (e.g. nonnegative matrix factorization) for data reduction. The data visualization and analysis methodologies were then defined and optimized using a model particle aggregate with known chemical composition. Nanoprobe-based X-ray fluorescence (nano-XRF) and X-ray absorption near edge structure (nano-XANES) spectromicroscopy techniques were used to probe elemental and chemical state information of the aggregate sample. We illustrated the complete chemical speciation methodology of the model particle by using XMIDAS. Next, we demonstrated the application of this approach in detecting and characterizing nanoparticles associated with alveolar macrophages. Our multimodal approach combining nano-XRF, nano-XANES, and differential phase-contrast imaging efficiently visualizes the chemistry of localized nanostructure with the morphology. We believe that the optimized data-reduction strategies and tool development will facilitate the analysis of complex biological and environmental samples using X-ray spectromicroscopy techniques.


Asunto(s)
Nanopartículas , Nanoestructuras , Rayos X , Programas Informáticos , Algoritmos
4.
Antioxidants (Basel) ; 11(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35624791

RESUMEN

The onset of type II diabetes increases the heart's susceptibility to oxidative damage because of the associated inflammation and diminished antioxidant response. Transcription factor NF-κB initiates inflammation while Nrf2 controls antioxidant defense. Current evidence suggests crosstalk between these transcription factors that may become dysregulated during type II diabetes mellitus (T2DM) manifestation. The objective of this study was to examine the dynamic changes that occur in both transcription factors and target genes during the progression of T2DM in the heart. Novel UC Davis T2DM (UCD-T2DM) rats at the following states were utilized: (1) lean, control Sprague-Dawley (SD; n = 7), (2) insulin-resistant pre-diabetic UCD-T2DM (Pre; n = 9), (3) 2-week recently diabetic UCD-T2DM (2Wk; n = 9), (4) 3-month diabetic UCD-T2DM (3Mo; n = 14), and (5) 6-month diabetic UCD-T2DM (6Mo; n = 9). NF-κB acetylation increased 2-fold in 3Mo and 6Mo diabetic animals compared to SD and Pre animals. Nox4 protein increased 4-fold by 6Mo compared to SD. Nrf2 translocation increased 82% in Pre compared to SD but fell 47% in 6Mo animals. GCLM protein fell 35% in 6Mo animals compared to Pre. Hmox1 mRNA decreased 45% in 6Mo animals compared to SD. These data suggest that during the progression of T2DM, NF-κB related genes increase while Nrf2 genes are suppressed or unchanged, perpetuating inflammation and a lesser ability to handle an oxidant burden altering the heart's redox state. Collectively, these changes likely contribute to the diabetes-associated cardiovascular complications.

5.
Environ Sci Technol ; 56(11): 7006-7016, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35235749

RESUMEN

Particulate matter (PM) air pollution poses a major global health risk, but the role of iron (Fe) is not clearly defined because chemistry at the particle-cell interface is often not considered. Detailed spectromicroscopy characterizations of PM2.5 samples from the San Joaquin Valley, CA identified major Fe-bearing components and estimated their relative proportions. Iron in ambient PM2.5 was present in spatially and temporally variable mixtures, mostly as Fe(III) oxides and phyllosilicates, but with significant fractions of metallic iron (Fe(0)), Fe(II,III) oxide, and Fe(III) bonded to organic carbon. Fe(0) was present as aggregated, nm-sized particles that comprised up to ∼30% of the Fe spectral fraction. Mixtures reflect anthropogenic and geogenic particles subjected to environmental weathering, but reduced Fe in PM originates from anthropogenic sources, likely as abrasion products. Possible mechanistic pathways involving Fe(0) particles and mixtures of Fe(II) and Fe(III) surface species may generate hydrogen peroxide and oxygen-centered radical species (hydroxyl, hydroperoxyl, or superoxide) in Fenton-type reactions. From a health perspective, PM mixtures with reduced and oxidized Fe will have a disproportionate effect in cellular response after inhalation because of their tendency to shuttle electrons and produce oxidants and electrophiles that induce inflammation and oxidative stress.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Humanos , Hierro , Material Particulado/análisis , Especies Reactivas de Oxígeno
6.
Arch Biochem Biophys ; 726: 109117, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007510

RESUMEN

Irwin Fridovich, the discoverer of superoxide dismutase, took the opportunity in this invited paper to address the important question, "Can the superoxide radical exert deleterious effects independent of participating with H2O2 in the production of the hydroxyl radical?" The affirmative answer that he reached was correct although subsequent research on peroxynitrite has provided more complexity.


Asunto(s)
Peróxido de Hidrógeno , Superóxidos , Radical Hidroxilo , Superóxido Dismutasa
7.
Environ Int ; 158: 106932, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662800

RESUMEN

BACKGROUND: Oxidative stress is conjectured to be related to many diseases. Furthermore, it is hypothesized that radiofrequency fields may induce oxidative stress in various cell types and thereby compromise human and animal health. This systematic review (SR) aims to summarize and evaluate the literature related to this hypothesis. OBJECTIVES: The main objective of this SR is to evaluate the associations between the exposure to radiofrequency electromagnetic fields and oxidative stress in experimental models (in vivo and in vitro). METHODS: The SR framework has been developed following the guidelines established in the WHO Handbook for Guideline Development and the Handbook for Conducting a Literature-Based Health Assessment). We will include controlled in vivo and in vitro laboratory studies that assess the effects of an exposure to RF-EMF on valid markers for oxidative stress compared to no or sham exposure. The protocol is registered in PROSPERO. We will search the following databases: PubMed, Embase, Web of Science Core Collection, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles will also be manually searched. STUDY APPRAISAL AND SYNTHESIS METHOD: Data will be extracted according to a pre-defined set of forms developed in the DistillerSR online software and synthesized in a meta-analysis when studies are judged sufficiently similar to be combined. If a meta-analysis is not possible, we will describe the effects of the exposure in a narrative way. RISK OF BIAS: The risk of bias will be assessed with the NTP/OHAT risk of bias rating tool for human and animal studies. We will use GRADE to assess the certainty of the conclusions (high, moderate, low, or inadequate) regarding the association between radiofrequency electromagnetic fields and oxidative stress. FUNDING: This work was funded by the World Health Organization (WHO). REGISTRATION: The protocol was registered on the PROSPERO webpage on July 8, 2021.


Asunto(s)
Campos Electromagnéticos , Ondas de Radio , Animales , Biomarcadores , Campos Electromagnéticos/efectos adversos , Humanos , Metaanálisis como Asunto , Estrés Oxidativo , Ondas de Radio/efectos adversos , Proyectos de Investigación , Revisiones Sistemáticas como Asunto
8.
Nat Rev Drug Discov ; 20(9): 689-709, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34194012

RESUMEN

Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.


Asunto(s)
Antioxidantes/farmacología , Desarrollo de Medicamentos , Estrés Oxidativo/efectos de los fármacos , Animales , Evaluación Preclínica de Medicamentos , Humanos , Terapia Molecular Dirigida , Oxidación-Reducción , Transducción de Señal/efectos de los fármacos
10.
J Alzheimers Dis ; 82(1): 307-316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967042

RESUMEN

BACKGROUND: Air pollution is widely associated with accelerated cognitive decline at later ages and risk of Alzheimer's disease (AD). Correspondingly, rodent models demonstrate the neurotoxicity of ambient air pollution and its components. Our studies with nano-sized particulate matter (nPM) from urban Los Angeles collected since 2009 have shown pro-amyloidogenic and pro-inflammatory responses. However, recent batches of nPM have diminished induction of the glutamate receptor GluA1 subunit, Iba1, TNFα, Aß42 peptide, and white matter damage. The same methods, materials, and mouse genotypes were used throughout. OBJECTIVE: Expand the nPM batch comparisons and evaluate archived brain samples to identify the earliest change in nPM potency. METHODS: Batches of nPM were analyzed by in vitro cell assays for NF-κB and Nrf2 induction for comparison with in vivo responses of mouse brain regions from mice exposed to these batches, analyzed by PCR and western blot. RESULTS: Five older nPM batches (2009-2017) and four recent nPM batches (2018, 2019) for NF-κB and Nrf2 induction showed declines in nPM potency after 2017 that paralleled declines of in vivo activity from independent exposures in different years. CONCLUSION: Transcription-based in vitro assays of nPM corresponded to the loss of in vivo potency for inflammatory and oxidative responses. These recent decreases of nPM neurotoxicity give a rationale for evaluating possible benefits to the risk of dementia and stroke in Los Angeles populations.


Asunto(s)
Contaminación del Aire/efectos adversos , Nanopartículas/efectos adversos , Síndromes de Neurotoxicidad , Material Particulado/efectos adversos , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Ratones , FN-kappa B
11.
Free Radic Biol Med ; 171: 143-155, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974976

RESUMEN

Sickle cell anemia (SCA) is characterized by decreased red blood cell (RBC) deformability due to polymerization of deoxygenated hemoglobin, leading to abnormal mechanical properties of RBC, increased cellular adhesion, and microcirculatory obstruction. Prior work has demonstrated that NO• influences RBC hydration and deformability and is produced at a basal rate that increases under shear stress in normal RBC. Nevertheless, the origin and physiological relevance of nitric oxide (NO•) production and scavenging in RBC remains unclear. We aimed to assess the basal and shear-mediated production of NO• in RBC from SCA patients and control (CTRL) subjects. RBCs loaded with a fluorescent NO• detector, DAF-FM (4-Amino-5-methylamino- 2',7'-difluorofluorescein diacetate), were imaged in microflow channels over 30-min without shear stress, followed by a 30-min period under 0.5Pa shear stress. We utilized non-specific nitric oxide synthase (NOS) blockade and carbon monoxide (CO) saturation of hemoglobin to assess the contribution of NOS and hemoglobin, respectively, to NO• production. Quantification of DAF-FM fluorescence intensity in individual RBC showed an increase in NO• in SCA RBC at the start of the basal period; however, both SCA and CTRL RBC increased NO• by a similar quantity under shear. A subpopulation of sickle-shaped RBC exhibited lower basal NO• production compared to discoid RBC from SCA group, and under shear became more circular in the direction of shear when compared to discoid RBC from SCA and CTRL, which elongated. Both CO and NOS inhibition caused a decrease in basal NO• production. Shear-mediated NO• production was decreased by CO in all RBC, but was decreased by NOS blockade only in SCA. In conclusion, total NO• production is increased and shear-mediated NO• production is preserved in SCA RBC in a NOS-dependent manner. Sickle shaped RBC with inclusions have higher NO• production and they become more circular rather than elongated with shear.


Asunto(s)
Anemia de Células Falciformes , Óxido Nítrico , Deformación Eritrocítica , Eritrocitos , Humanos , Microcirculación
12.
Arch Biochem Biophys ; 699: 108749, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33417945

RESUMEN

4-hydroxynonenal (HNE, 4-hydroxy-2-nonenal) is a primary α,ß-unsaturated aldehyde product of lipid peroxidation. The accumulation of HNE increases with aging and the mechanisms are mainly attributable to increased oxidative stress and decreased capacity of HNE elimination. In this review article, we summarize the studies on age-related change of HNE concentration and alteration of HNE metabolizing enzymes (GCL, GST, ALDHs, aldose reductase, and 20S-proteasome), and discuss potential mechanism of age-related decrease in HNE-elimination capacity by focusing on Nrf2 redox signaling.


Asunto(s)
Envejecimiento/metabolismo , Aldehídos/metabolismo , Animales , Humanos , Estrés Oxidativo/fisiología , Oxidorreductasas/metabolismo , Transducción de Señal/fisiología
13.
Atmos Environ (1994) ; 2452021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33223923

RESUMEN

The speciation, oxidation states, and relative abundance of iron (Fe) phases in PM2.5 samples from two locations in urban Los Angeles were investigated using a combination of bulk and spatially resolved, element-specific spectroscopy and microscopy methods. Synchrotron X-ray absorption spectroscopy (XAS) of bulk samples in situ (i.e., without extraction or digestion) was used to quantify the relative fractions of major Fe phases, which were corroborated by spatially resolved spectro-microscopy measurements. Ferrihydrite (amorphous Fe(III)-hydroxide) comprised the largest Fe fraction (34-52%), with hematite (α-Fe2O3; 13-23%) and magnetite (Fe3O4; 10-24%) identified as major crystalline oxide components. An Fe-bearing phyllosilicate fraction (16-23%) was fit best with a reference spectrum of a natural illite/smectite mineral, and metallic Fe(0) was a relatively small (2-6%) but easily identified component. Sizes, morphologies, oxidation state, and trace element compositions of Fe-bearing PM from electron microscopy, electron energy loss spectroscopy (EELS), and scanning transmission X-ray microscopy (STXM) revealed variable and heterogeneous mixtures of Fe species and phases, often associated with carbonaceous material with evidence of surface oxidation. Ferrihydrite (or related Fe(III) hydroxide phases) was ubiquitous in PM samples. It forms as an oxidation or surface alteration product of crystalline Fe phases, and also occurs as coatings or nanoparticles dispersed with other phases as a result of environmental dissolution and re-precipitation reactions. The prevalence of ferrihydrite (and adsorbed Fe(III) has likely been underestimated in studies of ambient PM because it is non-crystalline, non-magnetic, more soluble than crystalline phases, and found in complex mixtures. Review of potential sources of different particle types suggests that the majority of Fe-bearing PM from these urban sites originates from anthropogenic activities, primarily abrasion products from vehicle braking systems and engine emissions from combustion and/or wear. These variable mixtures have a high probability for electron transfer reactions between Fe, redox-active metals such as copper, and reactive carbon species such as quinones. Our findings suggest the need to assess biological responses of specific Fe-bearing phases both individually and in combination to unravel mechanisms of adverse health effects of particulate Fe.

14.
Free Radic Biol Med ; 158: 53-59, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32682927

RESUMEN

Glutathione (GSH) plays critical roles in the inflammatory response by acting as the master substrate for antioxidant enzymes and an important anti-inflammatory agent. In the early phase of the inflammatory response of macrophages, GSH content is decreased due to the down regulation of the catalytic subunit of glutamate cysteine ligase (GCLC). In the current study we investigated the underlying mechanism for this phenomenon. In human THP1-differentiated macrophages, GCLC mRNA had a half-life of 4 h under basal conditions, and it was significantly reduced to less than 2 h upon exposure to lipopolysaccharide (LPS), suggesting an increased decay of GCLC mRNA in the inflammatory response. The half-life of GCLC protein was >10 h under basal conditions, and upon LPS exposure the degradation rate of GCLC protein was significantly increased. The pan-caspase inhibitor Z-VAD-FMK but not the proteasome inhibitor MG132, prevented the down regulation of GCLC protein caused by LPS. Both caspase inhibitor Z-LEVD-FMK and siRNA of caspase-5 abrogated LPS-induced degradation of GCLC protein. In addition, supplement with γ-GC, the GCLC product, efficiently restored GSH content and suppressed the induction of NF-κB activity by LPS. In conclusion, these data suggest that GCLC down-regulation in the inflammatory response of macrophages is mediated through both increased mRNA decay and caspase-5-mediated GCLC protein degradation, and γ-GC is an efficient agent to restore GSH and regulate the inflammatory response.


Asunto(s)
Glutamato-Cisteína Ligasa , Glutatión , Caspasas/metabolismo , Regulación hacia Abajo , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Humanos , Macrófagos/metabolismo
15.
J Alzheimers Dis ; 76(3): 773-797, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32538853

RESUMEN

Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Encéfalo/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Enfermedades Cardiovasculares/etiología , Humanos
16.
Elife ; 92020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32579111

RESUMEN

The neurotoxicity of air pollution is undefined for sex and APOE alleles. These major risk factors of Alzheimer's disease (AD) were examined in mice given chronic exposure to nPM, a nano-sized subfraction of urban air pollution. In the cerebral cortex, female mice had two-fold more genes responding to nPM than males. Transcriptomic responses to nPM had sex-APOE interactions in AD-relevant pathways. Only APOE3 mice responded to nPM in genes related to Abeta deposition and clearance (Vav2, Vav3, S1009a). Other responding genes included axonal guidance, inflammation (AMPK, NFKB, APK/JNK signaling), and antioxidant signaling (NRF2, HIF1A). Genes downstream of NFKB and NRF2 responded in opposite directions to nPM. Nrf2 knockdown in microglia augmented NFKB responses to nPM, suggesting a critical role of NRF2 in air pollution neurotoxicity. These findings give a rationale for epidemiologic studies of air pollution to consider sex interactions with APOE alleles and other AD-risk genes.


Asunto(s)
Apolipoproteínas E/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Nanopartículas/toxicidad , Administración por Inhalación , Contaminantes Atmosféricos/toxicidad , Animales , Apolipoproteínas E/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Transcriptoma
17.
Methods Mol Biol ; 2144: 237-244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410040

RESUMEN

4-Hydroxenonenal (HNE) is one of the major α,ß-unsaturated aldehyde products of lipid peroxidation. HNE can form conjugates with macromolecules, including protein, and thereby alter their function. HNE and its conjugation with proteins are increased in aging and age-related diseases. To elucidate how HNE is involved in these aging-related pathophysiological changes, it is necessary to assess HNE modification of proteins. Here a simple and convenient Western-blot based method is presented to detect HNE modification of proteins in tissues of aging mice.


Asunto(s)
Envejecimiento/metabolismo , Aldehídos/metabolismo , Peroxidación de Lípido/genética , Biología Molecular/métodos , Animales , Ratones , Estrés Oxidativo/genética , Proteínas/metabolismo
18.
Free Radic Biol Med ; 157: 63-74, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32234331

RESUMEN

Nrf2 (NFE2L2 - nuclear factor (erythroid-derived 2)-like 2) is a transcription factor, which is repressed by interaction with a redox-sensitive protein Keap1 (Kelch-like ECH-associated protein 1). Deregulation of Nrf2 transcriptional activity has been described in the pathogenesis of multiple diseases, and the Nrf2/Keap1 axis has emerged as a crucial modulator of cellular homeostasis. Whereas the significance of Nrf2 in the modulation of biological processes has been well established and broadly discussed in detail, the focus on Keap1 rarely goes beyond the regulation of Nrf2 activity and redox sensing. However, recent studies and scrutinized analysis of available data point to Keap1 as an intriguing and potent regulator of cellular function. This review aims to shed more light on Keap1 structure, interactome, regulation and non-canonical functions, thereby enhancing its significance in cell biology. We also intend to highlight the impact of balance between Keap1 and Nrf2 in the maintenance of cellular homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción
19.
Environ Int ; 136: 105510, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004873

RESUMEN

Air pollution (AirP) is associated with many neurodevelopmental and neurological disorders in human populations. Rodent models show similar neurotoxic effects of AirP particulate matter (PM) collected by different methods or from various sources. However, controversies continue on the identity of the specific neurotoxic components and mechanisms of neurotoxicity. We collected urban PM by two modes at the same site and time: direct collection as an aqueous slurry (sPM) versus a nano-sized sub-fraction of PM0.2 that was eluted from filters (nPM). The nPM lacks water-insoluble PAHs (polycyclic aromatic hydrocarbons) and is depleted by >50% in bioactive metals (e.g., copper, iron, nickel), inorganic ions, black carbon, and other organic compounds. Three biological models were used: in vivo exposure of adult male mice to re-aerosolized nPM and sPM for 3 weeks, gestational exposure, and glial cell cultures. In contrast to larger inflammatory responses of sPM in vitro, cerebral cortex responses of mice to sPM and nPM largely overlapped for adult and gestational exposures. Adult brain responses included induction of IFNγ and NF-κB. Gestational exposure to nPM and sPM caused equivalent depressive behaviors. Responses to nPM and sPM diverged for cerebral cortex glutamate receptor mRNA, systemic fat gain and insulin resistance. The shared toxic responses of sPM with nPM may arise from shared transition metals and organics. In contrast, gestational exposure to sPM but not nPM, decreased glutamatergic mRNAs, which may be attributed to PAHs. We discuss potential mechanisms in the overlap between nPM and sPM despite major differences in bulk chemical composition.


Asunto(s)
Contaminantes Atmosféricos , Encéfalo , Nanopartículas , Material Particulado , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Femenino , Humanos , Masculino , Exposición Materna , Ratones , Nanopartículas/toxicidad , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...