Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Genome Med ; 16(1): 107, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187844

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors (PARPi) are targeted therapies approved for homologous recombination repair (HRR)-deficient breast, ovarian, pancreatic, and prostate cancers. Since inhibition of PARP1 is sufficient to cause synthetic lethality in tumors with homologous recombination deficiency (HRD), PARP1 selective inhibitors such as saruparib (AZD5305) are being developed. It is expected that selective PARP1 inhibition leads to a safer profile that facilitates its combination with other DNA damage repair inhibitors. Here, we aimed to characterize the antitumor activity of AZD5305 in patient-derived preclinical models compared to the first-generation PARP1/2 inhibitor olaparib and to identify mechanisms of resistance. METHODS: Thirteen previously characterized patient-derived tumor xenograft (PDX) models from breast, ovarian, and pancreatic cancer patients harboring germline pathogenic alterations in BRCA1, BRCA2, or PALB2 were used to evaluate the efficacy of AZD5305 alone or in combination with carboplatin or an ataxia telangiectasia and Rad3 related (ATR) inhibitor (ceralasertib) and compared it to the first-generation PARPi olaparib. We performed DNA and RNA sequencing as well as protein-based assays to identify mechanisms of acquired resistance to either PARPi. RESULTS: AZD5305 showed superior antitumor activity than the first-generation PARPi in terms of preclinical complete response rate (75% vs. 37%). The median preclinical progression-free survival was significantly longer in the AZD5305-treated group compared to the olaparib-treated group (> 386 days vs. 90 days). Mechanistically, AZD5305 induced more replication stress and genomic instability than the PARP1/2 inhibitor olaparib in PARPi-sensitive tumors. All tumors at progression with either PARPi (39/39) showed increase of HRR functionality by RAD51 foci formation. The most prevalent resistance mechanisms identified were the acquisition of reversion mutations in BRCA1/BRCA2 and the accumulation of hypomorphic BRCA1. AZD5305 did not sensitize PDXs with acquired resistance to olaparib but elicited profound and durable responses when combined with carboplatin or ceralasertib in 3/6 and 5/5 models, respectively. CONCLUSIONS: Collectively, these results show that the novel PARP1 selective inhibitor AZD5305 yields a potent antitumor response in PDX models with HRD and delays PARPi resistance alone or in combination with carboplatin or ceralasertib, which supports its use in the clinic as a new therapeutic option.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratones , Proteína BRCA1/genética , Proteína BRCA2/genética , Femenino , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Piperazinas/farmacología , Piperazinas/uso terapéutico , Indoles/uso terapéutico , Indoles/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carboplatino/farmacología , Carboplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética
2.
Haematologica ; 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38841800

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common malignancy that develops in patients with ataxia-telangiectasia, a cancer-predisposing inherited syndrome characterized by inactivating germline ATM mutations. ATM is also frequently mutated in sporadic DLBCL. To investigate lymphomagenic mechanisms and lymphoma-specific dependencies underlying defective ATM, we applied ribonucleic acid (RNA)-seq and genome-scale loss-offunction clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens to systematically interrogate B-cell lymphomas arising in a novel murine model (Atm-/-nu-/-) with constitutional Atm loss, thymic aplasia but residual T-cell populations. Atm-/-nu-/-lymphomas, which phenotypically resemble either activated B-cell-like or germinal center Bcell-like DLBCL, harbor a complex karyotype, and are characterized by MYC pathway activation. In Atm-/-nu-/-lymphomas, we discovered nucleotide biosynthesis as a MYCdependent cellular vulnerability that can be targeted through the synergistic nucleotidedepleting actions of mycophenolate mofetil (MMF) and the WEE1 inhibitor, adavosertib (AZD1775). The latter is mediated through a synthetically lethal interaction between RRM2 suppression and MYC dysregulation that results in replication stress overload in Atm-/-nu-/-lymphoma cells. Validation in cell line models of human DLBCL confirmed the broad applicability of nucleotide depletion as a therapeutic strategy for MYC-driven DLBCL independent of ATM mutation status. Our findings extend current understanding of lymphomagenic mechanisms underpinning ATM loss and highlight nucleotide metabolism as a targetable therapeutic vulnerability in MYC-driven DLBCL.

3.
Nat Commun ; 15(1): 4430, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789420

RESUMEN

Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation. Mechanistically, γH2AX-driven replication fork degradation is elicited by suppressing CtIP-mediated fork protection. As a result, H2AX loss restores replication fork stability and increases chemoresistance in BRCA1/2-deficient tumour cells without restoring homology-directed DNA repair, as highlighted by the lack of DNA damage-induced RAD51 foci. Furthermore, in the attempt to discover acquired genetic vulnerabilities, we find that ATM but not ATR inhibition overcomes PARP inhibitor (PARPi) resistance in H2AX-deficient tumours by interfering with CtIP-mediated fork protection. In summary, our results demonstrate a role for H2AX in replication fork biology in BRCA-deficient tumours and establish a function of H2AX separable from its classical role in DNA damage signalling and DSB repair.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Replicación del ADN , Resistencia a Antineoplásicos , Histonas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Femenino , Humanos , Ratones , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/deficiencia , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Histonas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ratones Desnudos
4.
Cancer Treat Res ; 186: 25-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37978129

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) represent the first medicines based on the targeting of the DNA damage response (DDR). PARPi have become standard of care for first-line maintenance treatment in ovarian cancer and have also been approved in other cancer indications including breast, pancreatic and prostate. Despite their efficacy, resistance to PARPi has been reported clinically and represents a growing patient population with unmet clinical need. Here, we describe the various mechanisms of PARPi resistance that have been identified in pre-clinical models and in the clinic.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Masculino , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Antineoplásicos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Mama
6.
Nat Commun ; 14(1): 5003, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591890

RESUMEN

While the toxicity of PARP inhibitors to cells with defects in homologous recombination (HR) is well established, other synthetic lethal interactions with PARP1/PARP2 disruption are poorly defined. To inform on these mechanisms we conducted a genome-wide screen for genes that are synthetic lethal with PARP1/2 gene disruption and identified C16orf72/HAPSTR1/TAPR1 as a novel modulator of replication-associated R-loops. C16orf72 is critical to facilitate replication fork restart, suppress DNA damage and maintain genome stability in response to replication stress. Importantly, C16orf72 and PARP1/2 function in parallel pathways to suppress DNA:RNA hybrids that accumulate at stalled replication forks. Mechanistically, this is achieved through an interaction of C16orf72 with BRCA1 and the RNA/DNA helicase Senataxin to facilitate their recruitment to RNA:DNA hybrids and confer resistance to PARP inhibitors. Together, this identifies a C16orf72/Senataxin/BRCA1-dependent pathway to suppress replication-associated R-loop accumulation, maintain genome stability and confer resistance to PARP inhibitors.


Asunto(s)
Proteína BRCA1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Estructuras R-Loop , Daño del ADN , ADN Helicasas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Estructuras R-Loop/genética , ARN , Proteína BRCA1/genética , Péptidos y Proteínas de Señalización Intracelular/genética
7.
Nat Commun ; 14(1): 4761, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580318

RESUMEN

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Proteínas Quinasas/genética , Reparación del ADN/genética , ADN/genética
8.
Cell Rep ; 42(5): 112484, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37163373

RESUMEN

The PSMC3IP-MND1 heterodimer promotes meiotic D loop formation before DNA strand exchange. In genome-scale CRISPR-Cas9 mutagenesis and interference screens in mitotic cells, depletion of PSMC3IP or MND1 causes sensitivity to poly (ADP-Ribose) polymerase inhibitors (PARPi) used in cancer treatment. PSMC3IP or MND1 depletion also causes ionizing radiation sensitivity. These effects are independent of PSMC3IP/MND1's role in mitotic alternative lengthening of telomeres. PSMC3IP- or MND1-depleted cells accumulate toxic RAD51 foci in response to DNA damage, show impaired homology-directed DNA repair, and become PARPi sensitive, even in cells lacking both BRCA1 and TP53BP1. Epistasis between PSMC3IP-MND1 and BRCA1/BRCA2 defects suggest that abrogated D loop formation is the cause of PARPi sensitivity. Wild-type PSMC3IP reverses PARPi sensitivity, whereas a PSMC3IP p.Glu201del mutant associated with D loop defects and ovarian dysgenesis does not. These observations suggest that meiotic proteins such as MND1 and PSMC3IP have a greater role in mitotic DNA repair.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN , Daño del ADN , Proteína BRCA1/genética , Reparación del ADN por Recombinación , Línea Celular Tumoral
9.
Clin Cancer Res ; 28(20): 4536-4550, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35921524

RESUMEN

PURPOSE: PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN: We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS: Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS: Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/genética , Biomarcadores , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Humanos , Nucleósidos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
10.
Cancer Res ; 82(8): 1646-1657, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35425960

RESUMEN

PARP inhibitors (PARPi) are approved drugs for platinum-sensitive, high-grade serous ovarian cancer (HGSOC) and for breast, prostate, and pancreatic cancers (PaC) harboring genetic alterations impairing homologous recombination repair (HRR). Detection of nuclear RAD51 foci in tumor cells is a marker of HRR functionality, and we previously established a test to detect RAD51 nuclear foci. Here, we aimed to validate the RAD51 score cut off and compare the performance of this test to other HRR deficiency (HRD) detection methods. Laboratory models from BRCA1/BRCA2-associated breast cancer, HGSOC, and PaC were developed and evaluated for their response to PARPi and cisplatin. HRD in these models and patient samples was evaluated by DNA sequencing of HRR genes, genomic HRD tests, and RAD51 foci detection. We established patient-derived xenograft models from breast cancer (n = 103), HGSOC (n = 4), and PaC (n = 2) that recapitulated patient HRD status and treatment response. The RAD51 test showed higher accuracy than HRR gene mutations and genomic HRD analysis for predicting PARPi response (95%, 67%, and 71%, respectively). RAD51 detection captured dynamic changes in HRR status upon acquisition of PARPi resistance. The accuracy of the RAD51 test was similar to HRR gene mutations for predicting platinum response. The predefined RAD51 score cut off was validated, and the high predictive value of the RAD51 test in preclinical models was confirmed. These results collectively support pursuing clinical assessment of the RAD51 test in patient samples from randomized trials testing PARPi or platinum-based therapies. SIGNIFICANCE: This work demonstrates the high accuracy of a histopathology-based test based on the detection of RAD51 nuclear foci in predicting response to PARPi and cisplatin.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Epitelial de Ovario/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Recombinación Homóloga/genética , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Recombinasa Rad51/genética
11.
Cancer Res Commun ; 2(10): 1244-1254, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36969741

RESUMEN

PARP inhibitors (PARPi) are currently indicated for the treatment of ovarian, breast, pancreatic, and prostate cancers harboring mutations in the tumor suppressor genes BRCA1 or BRCA2. In the case of ovarian and prostate cancers, their classification as homologous recombination repair (HRR) deficient (HRD) or mutated also makes PARPi an available treatment option beyond BRCA1 or BRCA2 mutational status. However, identification of the most relevant genetic alterations driving the HRD phenotype has proven difficult and recent data have shown that other genetic alterations not affecting HRR are also capable of driving PARPi responses. To gain insight into the genetics driving PARPi sensitivity, we performed CRISPR-Cas9 loss-of-function screens in six PARPi-insensitive cell lines and combined the output with published PARPi datasets from eight additional cell lines. Ensuing exploration of the data identified 110 genes whose inactivation is strongly linked to sensitivity to PARPi. Parallel cell line generation of isogenic gene knockouts in ovarian and prostate cancer cell lines identified that inactivation of core HRR factors is required for driving in vitro PARPi responses comparable with the ones observed for BRCA1 or BRCA2 mutations. Moreover, pan-cancer genetic, transcriptomic, and epigenetic data analyses of these 110 genes highlight the ones most frequently inactivated in tumors, making this study a valuable resource for prospective identification of potential PARPi-responsive patient populations. Importantly, our investigations uncover XRCC3 gene silencing as a potential new prognostic biomarker of PARPi sensitivity in prostate cancer. Significance: This study identifies tumor genetic backgrounds where to expand the use of PARPis beyond mutations in BRCA1 or BRCA2. This is achieved by combining the output of unbiased genome-wide loss-of-function CRISPR-Cas9 genetic screens with bioinformatics analysis of biallelic losses of the identified genes in public tumor datasets, unveiling loss of the DNA repair gene XRCC3 as a potential biomarker of PARPi sensitivity in prostate cancer.


Asunto(s)
Neoplasias Ováricas , Neoplasias de la Próstata , Humanos , Masculino , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Estudios Prospectivos , Neoplasias de la Próstata/tratamiento farmacológico , Resistencia a Antineoplásicos , Biomarcadores
12.
Nucleic Acids Res ; 49(15): 8665-8683, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34329458

RESUMEN

The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ciclina C/genética , Quinasa 8 Dependiente de Ciclina/genética , Transcripción Genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Humanos , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
13.
Trends Cell Biol ; 31(8): 628-643, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685796

RESUMEN

Ubiquitin and ubiquitin-like proteins (UBLs) function as critical post-translational modifiers in the maintenance of genome stability. Ubiquitin/UBL-conjugating enzymes (E2s) are responsible, as part of a wider enzymatic cascade, for transferring single moieties or polychains of ubiquitin/UBLs to one or multiple residues on substrate proteins. Recent advances in structural and mechanistic understanding of how ubiquitin/UBL substrate attachment is orchestrated indicate that E2s can exert control over chain topology, substrate-site specificity, and downstream physiological effects to help maintain genome stability. Drug discovery efforts have typically focussed on modulating other members of the ubiquitin/UBL cascades or the ubiquitin-proteasome system. Here, we review the current standing of E2s in genome stability and revisit their potential as pharmacological targets for developing novel anti-cancer therapies.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina , Inestabilidad Genómica , Humanos , Procesamiento Proteico-Postraduccional , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinas/metabolismo
14.
Cancers (Basel) ; 14(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008208

RESUMEN

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are now a first-line maintenance treatment in ovarian cancer and have been approved in other cancer types, including breast, pancreatic and prostate. Despite their efficacy, and as is the case for other targeted therapies, resistance to PARPi has been reported clinically and is generating a growing patient population of unmet clinical need. Here, we discuss the mechanisms of resistance that have been described in pre-clinical models and focus on those that have been already identified in the clinic, highlighting the key challenges to fully characterise the clinical landscape of PARPi resistance and proposing ways of preventing and overcoming it.

15.
Nat Protoc ; 14(7): 1991-2014, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31160788

RESUMEN

Ploidy represents the number of chromosome sets in a cell. Although gametes have a haploid genome (n), most mammalian cells have diploid genomes (2n). The diploid status of most cells correlates with the number of probable alleles for each autosomal gene and makes it difficult to target these genes via mutagenesis techniques. Here, we describe a 7-week protocol for the derivation of mouse haploid embryonic stem cells (hESCs) from female gametes that also outlines how to maintain the cells once derived. We detail additional procedures that can be used with cell lines obtained from the mouse Haplobank, a biobank of >100,000 individual mouse hESC lines with targeted mutations in 16,970 genes. hESCs can spontaneously diploidize and can be maintained in both haploid and diploid states. Mouse hESCs are genomically and karyotypically stable, are innately immortal and isogenic, and can be derived in an array of differentiated cell types; they are thus highly amenable to genetic screens and to defining molecular connectivity pathways.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Haploidia , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Animales , Blastocisto/citología , Línea Celular , Separación Celular/métodos , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Flujo de Trabajo
16.
Nat Commun ; 10(1): 87, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622252

RESUMEN

Mutations in the ATM tumor suppressor gene confer hypersensitivity to DNA-damaging chemotherapeutic agents. To explore genetic resistance mechanisms, we performed genome-wide CRISPR-Cas9 screens in cells treated with the DNA topoisomerase I inhibitor topotecan. Thus, we here establish that inactivating terminal components of the non-homologous end-joining (NHEJ) machinery or of the BRCA1-A complex specifically confer topotecan resistance to ATM-deficient cells. We show that hypersensitivity of ATM-mutant cells to topotecan or the poly-(ADP-ribose) polymerase (PARP) inhibitor olaparib reflects delayed engagement of homologous recombination at DNA-replication-fork associated single-ended double-strand breaks (DSBs), allowing some to be subject to toxic NHEJ. Preventing DSB ligation by NHEJ, or enhancing homologous recombination by BRCA1-A complex disruption, suppresses this toxicity, highlighting a crucial role for ATM in preventing toxic LIG4-mediated chromosome fusions. Notably, suppressor mutations in ATM-mutant backgrounds are different to those in BRCA1-mutant scenarios, suggesting new opportunities for patient stratification and additional therapeutic vulnerabilities for clinical exploitation.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN por Unión de Extremidades/genética , Resistencia a Antineoplásicos/genética , Animales , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN Ligasa (ATP)/metabolismo , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Células Madre Embrionarias de Ratones , Mutación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Topotecan/farmacología , Topotecan/uso terapéutico
17.
BMC Bioinformatics ; 19(1): 366, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30286710

RESUMEN

BACKGROUND: Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models to study various biological and preclinical aspects of cancer. However, analyses of their RNA and DNA profiles are challenging, because they comprise reads not only from the grafted human cancer but also from the murine host. The reads of murine origin result in false positives in mutation analysis of DNA samples and obscure gene expression levels when sequencing RNA. However, currently available algorithms are limited and improvements in accuracy and ease of use are necessary. RESULTS: We developed the R-package XenofilteR, which separates mouse from human sequence reads based on the edit-distance between a sequence read and reference genome. To assess the accuracy of XenofilteR, we generated sequence data by in silico mixing of mouse and human DNA sequence data. These analyses revealed that XenofilteR removes > 99.9% of sequence reads of mouse origin while retaining human sequences. This allowed for mutation analysis of xenograft samples with accurate variant allele frequencies, and retrieved all non-synonymous somatic tumor mutations. CONCLUSIONS: XenofilteR accurately dissects RNA and DNA sequences from mouse and human origin, thereby outperforming currently available tools. XenofilteR is open source and available at https://github.com/PeeperLab/XenofilteR .


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Computadores , Bases de Datos Genéticas , Humanos , Ratones
18.
Sci Rep ; 8(1): 6161, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670134

RESUMEN

Establishing genetic and chemo-genetic interactions has played key roles in elucidating mechanisms by which certain chemicals perturb cellular functions. In contrast to gene disruption/depletion strategies to identify mechanisms of drug resistance, searching for point-mutational genetic suppressors that can identify separation- or gain-of-function mutations has been limited. Here, by demonstrating its utility in identifying chemical-genetic suppressors of sensitivity to the DNA topoisomerase I poison camptothecin or the poly(ADP-ribose) polymerase inhibitor olaparib, we detail an approach allowing systematic, large-scale detection of spontaneous or chemically-induced suppressor mutations in yeast or haploid mammalian cells in a short timeframe, and with potential applications in other haploid systems. In addition to applications in molecular biology research, this protocol can be used to identify drug targets and predict drug-resistance mechanisms. Mapping suppressor mutations on the primary or tertiary structures of protein suppressor hits provides insights into functionally relevant protein domains. Importantly, we show that olaparib resistance is linked to missense mutations in the DNA binding regions of PARP1, but not in its catalytic domain. This provides experimental support to the concept of PARP1 trapping on DNA as the prime source of toxicity to PARP inhibitors, and points to a novel olaparib resistance mechanism with potential therapeutic implications.


Asunto(s)
Camptotecina/farmacología , ADN-Topoisomerasas de Tipo I/genética , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Dominios Proteicos/genética , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células Madre Embrionarias , Humanos , Ratones , Modelos Moleculares , Mutación , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Conformación Proteica
19.
Pharmacol Ther ; 188: 155-167, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29580942

RESUMEN

Many conventional chemotherapies used in cancer treatment exert their effect by inflicting DNA damage. Highly proliferative tissues, as well as tumour cells, are particularly vulnerable to this damage resulting in unwanted toxicities. In contrast, a targeted therapeutic approach has the aim of specifically eliminating cancer cells but with a reduced effect on healthy tissue. New therapies have been developed that target the replication stress response (RSR), a branch of the broader DNA damage response that specifically deals with interferences of the normal DNA replication program. Different pharmaceutical companies have developed inhibitors of the RSR kinases ATR, CHK1 and WEE1, which are currently at different phases of clinical development. Here, we review how the RSR works at the molecular level, what is the rationale for its targeting, and how we envisage its best use in the clinic, based on patient selection and combination therapies supported by in vitro and in vivo preclinical studies.


Asunto(s)
Antineoplásicos/farmacología , Replicación del ADN/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Daño del ADN , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores
20.
Nat Commun ; 8(1): 374, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851861

RESUMEN

Emerging data demonstrate homologous recombination (HR) defects in castration-resistant prostate cancers, rendering these tumours sensitive to PARP inhibition. Here we demonstrate a direct requirement for the androgen receptor (AR) to maintain HR gene expression and HR activity in prostate cancer. We show that PARP-mediated repair pathways are upregulated in prostate cancer following androgen-deprivation therapy (ADT). Furthermore, upregulation of PARP activity is essential for the survival of prostate cancer cells and we demonstrate a synthetic lethality between ADT and PARP inhibition in vivo. Our data suggest that ADT can functionally impair HR prior to the development of castration resistance and that, this potentially could be exploited therapeutically using PARP inhibitors in combination with androgen-deprivation therapy upfront in advanced or high-risk prostate cancer.Tumours with homologous recombination (HR) defects become sensitive to PARPi. Here, the authors show that androgen receptor (AR) regulates HR and AR inhibition activates the PARP pathway in vivo, thus inhibition of both AR and PARP is required for effective treatment of high risk prostate cancer.


Asunto(s)
Colágeno Tipo XI/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/metabolismo , Mutaciones Letales Sintéticas , Colágeno Tipo XI/genética , Recombinación Homóloga , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA