Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 15: 37-50, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213574

RESUMEN

Leishmaniasis is a neglected tropical disease that has affected more than 350 million people worldwide and can manifest itself in three different forms: cutaneous, mucocutaneous, or visceral. Furthermore, the current treatment options have drawbacks which compromise efficacy and patient compliance. To face this global health concern, new alternatives for the treatment of leishmaniasis have been explored. Curcumin, a polyphenol obtained from the rhizome of turmeric, exhibits leishmanicidal activity against different species of Leishmania spp. Although its mechanism of action has not yet been fully elucidated, its leishmanicidal potential may be associated with its antioxidant and anti-inflammatory properties. However, it has limitations that compromise its clinical use. Conversely, nanotechnology has been used as a tool for solving biopharmaceutical challenges associated with drugs, such as curcumin. From a drug delivery standpoint, nanocarriers (1-1000 nm) can improve stability, increase solubility, promote intracellular delivery, and increase biological activity. Thus, this review offers a deep look into curcumin-loaded nanocarriers intended for the treatment of leishmaniasis.

2.
Discov Nano ; 18(1): 118, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733165

RESUMEN

BACKGROUND: It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS: The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS: Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.

3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569487

RESUMEN

This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 µg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 µg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 µg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.


Asunto(s)
Antineoplásicos , Arecaceae , Melanoma , Nanogeles , Sistema de Administración de Fármacos con Nanopartículas , Aceite de Palma , Resveratrol , Resveratrol/administración & dosificación , Melanoma/terapia , Humanos , Línea Celular Tumoral , Nanogeles/administración & dosificación , Nanogeles/química , Arecaceae/química , Aceite de Palma/química , Semillas/química , Tamaño de la Partícula , Antineoplásicos/administración & dosificación , Antineoplásicos/química
4.
Int J Pharm ; 639: 122965, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37084836

RESUMEN

Ivermectin (IVM) is a potent antiparasitic widely used in human and veterinary medicine. However, the low oral bioavailability of IVM restricts its therapeutic potential in many parasitic infections, highlighting the need for novel formulation approaches. In this study, poly(ε-caprolactone) (PCL) nanocapsules containing IVM were successfully developed using the nanoprecipitation method. Pumpkin seed oil (PSO) was used as an oily core in the developed nanocapsules. Previously, PSO was chemically analyzed by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS). The solubility of IVM in PSO was found to be 4266.5 ± 38.6 µg/mL. In addition, the partition coefficient of IVM in PSO/water presented a logP of 2.44. A number of nanocapsule batches were produced by factorial design resulting in an optimized formulation. Negatively charged nanocapsules measuring around 400 nm demonstrated unimodal size distribution, and presented regular spherical morphology under transmission electron microscopy. High encapsulation efficiency (98-100%) was determined by HPLC. IVM-loaded capsules were found to be stable in nanosuspensions at 4 °C and 25 °C, with no significant variations in particle size observed over a period of 150 days. Nanoencapsulated IVM (0.3 mM) presented reduced toxicity to J774 macrophages and L929 fibroblasts compared to free IVM. Moreover, IVM-loaded nanocapsules also demonstrated enhanced in vitro anthelmintic activity against Strongyloides venezuelensis in comparison to free IVM. Collectively, the present findings demonstrate the promising potential of PCL-PSO nanocapsules to improve the antiparasitic effects exerted by IVM.


Asunto(s)
Ivermectina , Nanocápsulas , Humanos , Ivermectina/farmacología , Ivermectina/química , Antiparasitarios/farmacología , Antiparasitarios/química , Nanocápsulas/química , Polímeros , Poliésteres/química
6.
J Control Release ; 329: 758-761, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33038449

RESUMEN

Ivermectin is an FDA-approved broad-spectrum antiparasitic agent with demonstrated antiviral activity against a number of DNA and RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite this promise, the antiviral activity of ivermectin has not been consistently proven in vivo. While ivermectin's activity against SARS-CoV-2 is currently under investigation in patients, insufficient emphasis has been placed on formulation challenges. Here, we discuss challenges surrounding the use of ivermectin in the context of coronavirus disease-19 (COVID-19) and how novel formulations employing micro- and nanotechnologies may address these concerns.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Portadores de Fármacos/química , Ivermectina/uso terapéutico , Nanopartículas/química , SARS-CoV-2 , Administración por Inhalación , Administración Oral , Aerosoles , Antivirales/administración & dosificación , Composición de Medicamentos , Quimioterapia Combinada , Humanos , Ivermectina/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2/efectos de los fármacos , Resultado del Tratamiento
8.
Drug Deliv Transl Res ; 10(6): 1764-1770, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32876880

RESUMEN

Oil in water nano-emulsions are drug delivery systems constituted by liquid lipophilic nano-droplets dispersed through the external aqueous phase, often reaching the kinetic stability with surfactant as stabilizers. Essential oils can be the oily phase or the source of bioactive compounds. In this study, the essential oil of Aeollanthus suaveolens-a plant used in folk medicine due to its psychopharmacological effects-was used for preparation of fine nano-emulsions by a low-energy titrating method. Monodisperse small nano-droplets (ca. 70 nm; PdI 0.200) were assembled by using blends of non-ionic surfactants, indicating modulation on surfactant system lead to altering the physical property. In a separate set of experiments, we investigated the role of this modulation on biological properties of the optimal nano-emulsion. The zebrafish embryos were more susceptible to the nano-emulsion than the bulk essential oil, showing the improved bioactivity due to nano-sizing. Therefore, adult zebrafish was treated, and paralysis was observed in the groups treated with the nano-emulsion, being this finding in accordance with hypnosis. At the same essential oil dose, another behavior was observed, suggesting that expected dose-dependent effects associated to sedative-hypnotics can be achieved by nano-sizing of psychoactive essential oils. This paper contributes to the state-of-art drug delivery systems by opening perspectives for novel sedative-hypnotics nano-emulsified essentials oils that can reach hypnotic effects at considerably lower dose, when compared with bulk materials, being useful for further completed dose-response studies.Graphical abstract.


Asunto(s)
Lamiaceae/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Emulsiones , Nanotecnología , Aceites Volátiles/química , Aceites de Plantas/química , Tensoactivos , Agua , Pez Cebra
9.
Acta Trop ; 211: 105595, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32585150

RESUMEN

17-N-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) is an inhibitor of heat shock protein 90 (Hsp90), which has been studied in the treatment of cancer such as leukemia or solid tumors. Alternatively, 17-AAG may represent a promising therapeutic agent against leishmaniasis. However, the delivery of 17-AAG is difficult due to its poor aqueous solubility. For exploring the therapeutic value of 17-AAG, we developed solid lipid nanoparticles (SLN) by double emulsion method. SLN exhibited ~100 nm, PDI < 0.2 and zeta potential ~20 mV. In addition, SLN were morphologically spherical with negligible aggregation. The entrapment efficiency of 17-AAG into the lipid matrix reached at nearly 80%. In a separate set of experiments, fluorescent SLN (FITC-labeled) showed a remarkable macrophage uptake, peaking within 2 h of incubation by confocal microscopy. Regarding the drug internalization as critical step for elimination of intracellular Leishmania, this finding demonstrates an important feature of the developed SLN. Collectively, these data indicate the feasibility of developing SLN as potential delivery systems for 17-AAG in leishmaniasis chemotherapy.


Asunto(s)
Benzoquinonas/metabolismo , Benzoquinonas/farmacología , Lactamas Macrocíclicas/metabolismo , Lactamas Macrocíclicas/farmacología , Lípidos/química , Macrófagos/metabolismo , Nanopartículas/química , Animales , Benzoquinonas/administración & dosificación , Benzoquinonas/química , Portadores de Fármacos/uso terapéutico , Proteínas HSP90 de Choque Térmico/uso terapéutico , Lactamas Macrocíclicas/administración & dosificación , Lactamas Macrocíclicas/química , Leishmania , Leishmaniasis/tratamiento farmacológico , Estructura Molecular , Solubilidad
10.
Int J Pharm ; 580: 119242, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32199961

RESUMEN

Bacterial levan is a fructose homopolymer that offers great potential in biotechnological applications due to biocompatibility, biodegradability and non-toxicity. This biopolymer possesses diverse multifunctional features, which translates into a wide range of applicability, including in industry, consumer products, pharmaceuticals and biomedicine. Extensive research has identified great potential for its exploitation in human health. In addition, nanostructured systems have provided significant advances in the area of health, mainly with respect to disease diagnosis and treatment. While the functional properties of these natural polysaccharide-based polymers are desirable in these systems, research in this area has been limited to few natural polymers, such as chitosan, alginate and dextran, which obscures the true potential of levan in the production of nanostructured systems for biotechnological and medical applications. The present review considers the latest research in the field to focus on the use of levan as a promising biopolymer for the development of nanomaterials.


Asunto(s)
Fructanos/química , Nanoestructuras/química , Alginatos/química , Materiales Biocompatibles/química , Biopolímeros/química , Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Polímeros/química , Polisacáridos/química
11.
Int J Pharm ; 576: 118997, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31893542

RESUMEN

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Growth factor therapy has emerged as novel therapeutic strategy under investigation for CVD. In this sense, adrenomedullin-2 (ADM-2) has been recently identified as a new angiogenic factor able to regulate the regional blood flow and cardiovascular function. However, the therapeutic value of ADM-2 is limited by its short biological half-life and low plasma stability. Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles have been investigated as growth factor delivery systems for cardiac repair. In this study, we aimed to develop PLGA nanoparticles containing ADM-2 intended for therapeutic angiogenesis. PLGA nanoparticles containing ADM-2 were prepared by a double emulsion modified method, resulting in 300 nm-sized stable particles with zeta potential around - 30 mV. Electron microscopy analysis by SEM and TEM revealed spherical particles with a smooth surface. High encapsulation efficiency was reached (ca.70%), as quantified by ELISA. ADM-2 associated to polymer nanoparticles was also determined by EDS elemental composition analysis, SDS-PAGE and LC-MS/MS for peptide identification. In vitro release assays showed the sustained release of ADM-2 from polymer nanoparticles for 21 days. Cell viability experiments were performed in J774 macrophages and H9c2 cardiomyocyte cells, about which PLGA nanoparticles loaded with ADM-2 did not cause toxicity in the range 0.01-1 mg/ml. Of note, encapsulated ADM-2 significantly induced cell proliferation in EA.hy926 endothelial cells, indicating the ADM-2 bioactivity was preserved after the encapsulation process. Collectively, these results demonstrate the feasibility of using PLGA nanoparticles as delivery systems for the angiogenic peptide ADM-2, which could represent a novel approach for therapeutic angiogenesis in CVD using growth factor therapy.


Asunto(s)
Inductores de la Angiogénesis/administración & dosificación , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos , Células Endoteliales/efectos de los fármacos , Hormonas Peptídicas/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/toxicidad , Animales , Línea Celular , Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Humanos , Cinética , Ratones , Nanopartículas , Hormonas Peptídicas/química , Hormonas Peptídicas/toxicidad , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/toxicidad , Ratas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Solubilidad
12.
Arq. bras. cardiol ; 107(3): 271-275, Sept. 2016. tab
Artículo en Inglés | LILACS | ID: lil-796038

RESUMEN

Abstract Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine.


Resumo O infarto do miocárdio representa a manifestação mais significativa da cardiopatia isquêmica e está associado a elevada morbimortalidade. Novas estratégias vêm sendo investigadas com o intuito de regenerar o miocárdio lesionado, incluindo a terapia gênica, a terapia celular e a utilização de fatores de crescimento. A terapia com fatores de crescimento despertou interesse em medicina cardiovascular, devido aos mecanismos de regeneração induzidos por essas biomoléculas, incluindo angiogênese, remodelamento da matriz extracelular, proliferação de cardiomiócitos e recrutamento de células-tronco, dentre outros. Em conjunto, tais mecanismos promovem a reparação do miocárdio e a melhora da função cardíaca. Esta revisão pretende abordar o papel estratégico da terapia, com fatores de crescimento, para a regeneração cardíaca, considerando seu caráter inovador e multifatorial sobre o reparo do miocárdio após dano isquêmico. Diferentes questões serão discutidas, destacando-se os mecanismos de regeneração como recurso terapêutico potencial mediado por fatores de crescimento e os desafios para tornar essas proteínas terapeuticamente viáveis no âmbito da cardiologia e da medicina regenerativa.


Asunto(s)
Humanos , Regeneración/fisiología , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/terapia , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Medicina Regenerativa/métodos , Neovascularización Fisiológica/fisiología , Miocitos Cardíacos/fisiología , Medicina Regenerativa/tendencias , Corazón/fisiología
13.
Arq Bras Cardiol ; 107(3): 271-275, 2016 Sep.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-27355588

RESUMEN

Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. Resumo O infarto do miocárdio representa a manifestação mais significativa da cardiopatia isquêmica e está associado a elevada morbimortalidade. Novas estratégias vêm sendo investigadas com o intuito de regenerar o miocárdio lesionado, incluindo a terapia gênica, a terapia celular e a utilização de fatores de crescimento. A terapia com fatores de crescimento despertou interesse em medicina cardiovascular, devido aos mecanismos de regeneração induzidos por essas biomoléculas, incluindo angiogênese, remodelamento da matriz extracelular, proliferação de cardiomiócitos e recrutamento de células-tronco, dentre outros. Em conjunto, tais mecanismos promovem a reparação do miocárdio e a melhora da função cardíaca. Esta revisão pretende abordar o papel estratégico da terapia, com fatores de crescimento, para a regeneração cardíaca, considerando seu caráter inovador e multifatorial sobre o reparo do miocárdio após dano isquêmico. Diferentes questões serão discutidas, destacando-se os mecanismos de regeneração como recurso terapêutico potencial mediado por fatores de crescimento e os desafios para tornar essas proteínas terapeuticamente viáveis no âmbito da cardiologia e da medicina regenerativa.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/terapia , Regeneración/fisiología , Medicina Regenerativa/métodos , Corazón/fisiología , Humanos , Miocitos Cardíacos/fisiología , Neovascularización Fisiológica/fisiología , Medicina Regenerativa/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...