Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 247: 112342, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536163

RESUMEN

The inorganic antineoplastic drug cisplatin was made to react in solution with the dipeptide cysteinylglycine (CysGly), chosen as a functional model of glutathione, and the reaction products were analyzed using electrospray ionization mass spectrometry (ESI-MS). Selected complexes, i.e., the primary substitution product cis-[PtCl(NH3)2(CysGly)]+ and the chelate cis-[PtCl(NH3)(CysGly)]+, were submitted to IR multiple photon dissociation (IRMPD) spectroscopy obtaining their vibrational features. The experimental IR ion spectra were compared with the calculated IR absorptions of different plausible isomeric families, finding CysGly to bind preferentially platinum(II) via its deprotonated thiolic group in the monovalent complex, cis-[PtCl(NH3)2(CysGly)]+, and to evolve in the S,N-bound chelate structure cis-[PtCl(NH3)(CysGly)]+ through the SH and NH2 functionality of the cysteine residue. Moreover, our findings indicate that the platination reaction does not affect the CysGly peptide bond, which remains in its trans configuration. These results provide additional insights into the reactivity of Pt(II)-complexes with glutathione which is involved in cellular cisplatin resistance.


Asunto(s)
Antineoplásicos , Cisplatino , Humanos , Cisplatino/química , Antineoplásicos/química , Espectrofotometría Infrarroja , Dipéptidos , Glutatión
2.
Inorg Chem ; 62(36): 14546-14558, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37647164

RESUMEN

Complexes generated in the gas phase involving the purine nucleobase guanine bound to second and third generation platinum drugs, namely, carboplatin (CarboPt) and oxaliplatin (OxaliPt), were investigated by combining tandem mass spectrometry, collision-induced dissociation (CID), infrared multiple photon dissociation spectroscopy (IRMPD), and density functional theory (DFT) calculations. As the first step, a spectroscopic characterization of the protonated platinum drugs was accomplished. Protonation of both CarboPt and OxaliPt in the gas phase occurs on one of the two carbonyl groups of the cyclobutanedicarboxylate and oxalate ligand, respectively. Such protonation has been postulated by several theoretical studies as a key preliminary step in the hydrolysis of Pt drugs under acidic conditions. Subsequently, the protonated drugs react with guanine in solution to generate a complex of general formula [Pt drug + H + guanine]+, which was then mass-selected. CID experiments provided evidence of the presence of strong binding between guanine and platinum-based drugs within the complexes. The structures of the two complexes have also been examined by comparing the experimental IRMPD spectra recorded in two spectral regions with DFT-computed IR spectra. For each system, the IRMPD spectra agree with the vibrational spectra calculated for the global minimum structures, which present a monodentate complexation of Pt at the N7 position of canonical guanine. This binding scheme is therefore akin to that observed for cisplatin, while other coordination sites yield substantially less stable species. Interestingly, in the case of oxaliplatin, the IRMPD spectra are consistent with the presence of two isomeric forms very close in energy.


Asunto(s)
Guanina , Espectrometría de Masas en Tándem , Carboplatino , Oxaliplatino , Espectrofotometría Infrarroja , Platino (Metal)
3.
J Agric Food Chem ; 71(9): 4005-4015, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36849438

RESUMEN

Naringenin (Nar) and its structural isomer, naringenin chalcone (ChNar), are two natural phytophenols with beneficial health effects belonging to the flavonoids family. A direct discrimination and structural characterization of the protonated forms of Nar and ChNar, delivered into the gas phase by electrospray ionization (ESI), was performed by mass spectrometry-based methods. In this study, we exploit a combination of electrospray ionization coupled to (high-resolution) mass spectrometry (HR-MS), collision-induced dissociation (CID) measurements, IR multiple-photon dissociation (IRMPD) action spectroscopy, density functional theory (DFT) calculations, and ion mobility-mass spectrometry (IMS). While IMS and variable collision-energy CID experiments hardly differentiate the two isomers, IRMPD spectroscopy appears to be an efficient method to distinguish naringenin from its related chalcone. In particular, the spectral range between 1400 and 1700 cm-1 is highly specific in discriminating between the two protonated isomers. Selected vibrational signatures in the IRMPD spectra have allowed us to identify the nature of the metabolite present in methanolic extracts of commercial tomatoes and grapefruits. Furthermore, comparisons between experimental IRMPD and calculated IR spectra have clarified the geometries adopted by the two protonated isomers, allowing a conformational analysis of the probed species.


Asunto(s)
Chalconas , Espectrometría de Movilidad Iónica , Espectrofotometría Infrarroja
4.
Inorg Chem ; 62(4): 1341-1353, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36655890

RESUMEN

The dinuclear copper complex bearing a 2,7-disubstituted-1,8-naphthalenediol ligand, [(HtomMe){Cu(OAc)}2](OAc), a potential anticancer drug able to bind to two neighboring phosphates in the DNA backbone, is endowed with stronger cytotoxic effects and inhibition ability of DNA synthesis in human cancer cells as compared to cisplatin. In this study, the intrinsic binding ability of the charged complex [(HtomMe){Cu(OAc)}2]+ is investigated with representative phosphate diester ligands with growing chemical complexity, ranging from simple inorganic phosphate up to mononucleotides. An integrated method based on high-resolution mass spectrometry (MS), tandem MS, and infrared multiple photon dissociation (IRMPD) spectroscopy in the 600-1800 cm-1 spectral range, backed by quantum chemical calculations, has been used to characterize complexes formed in solution and delivered as bare species by electrospray ionization. The structural features revealed by IRMPD spectroscopy have been interpreted by comparison with linear IR spectra of the lowest-energy structures, revealing diagnostic signatures of binding modes of the dinuclear copper(II) complex with phosphate groups, whereas the possible competitive interaction with the nucleobase is silenced in the gas phase. This result points to the prevailing interaction of [(HtomMe){Cu(OAc)}2]+ with phosphate diesters and mononucleotides as a conceivable contribution to the observed anticancer activity.


Asunto(s)
Antineoplásicos , Cobre , Humanos , Cobre/química , Ligandos , Fosfatos , Antineoplásicos/farmacología , Antineoplásicos/química , Espectrofotometría Infrarroja/métodos , ADN/química
5.
J Inorg Biochem ; 237: 112017, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209532

RESUMEN

The reactivity of a widely used metal based antineoplastic drug, cisplatin, cis-PtCl2(NH3)2, with L-cysteine (Cys) has been investigated using a combination of electrospray ionization mass spectrometry (ESI-MS), IRMPD gas phase ion spectroscopy and DFT calculations. The cysteine lateral chain represents one of the main platination sites in proteins, which is believed to be related to the resistance mechanisms to cisplatin. The vibrational features of the mass-selected substitution product cis-[PtCl(NH3)2(Cys)]+ and the intercepted cis-[PtCl(NH3)2(H2O)(Cys)]+ intermediate complex were compared to calculated IR spectra, enabling the assessment of the sampled ions structures. In cis-[PtCl(NH3)2(Cys)]+, cysteine was found to bind platinum through the sulfur atom as a thiolate zwitterion, highlighting the enhanced acidity of the cysteine thiol group upon metal coordination. The cis-[PtCl(NH3)2(H2O)(Cys)]+ structure complies with the non-covalent encounter complex, formed by cis-[PtCl(NH3)2(H2O)]+ and neutral cysteine. This species is able to undergo the substitution process to produce cis-[PtCl(NH3)2(Cys)]+ when activated as a mass-isolated ion suggesting its participation in the reaction mechanism of cisplatin with cysteine in solution. Finally, the DFT-calculated energy profile for the substitution reaction was correlated with the peculiar gas-phase reactivity of this non-covalent complex, resulting to be 10-fold less reactive toward substitution than the corresponding methionine complex.


Asunto(s)
Antineoplásicos , Cisplatino , Cisplatino/química , Platino (Metal) , Cisteína/química , Aminoácidos , Teoría Funcional de la Densidad , Antineoplásicos/química , Análisis Espectral , Iones
6.
ACS Omega ; 7(23): 19535-19544, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721943

RESUMEN

Genistein is a naturally occurring polyphenol belonging to the family of flavonoids with estrogenic properties and proven antioxidant, anti-inflammatory, and hormonal effects. Genistein and its derivatives are involved in radical scavenging activity by way of mechanisms based on sequential proton-loss electron transfer. In view of this role, a detailed structural characterization of its bare deprotonated form, [geni-H]-, generated by electrospray ionization, has been performed by tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy in the 800-1800 cm-1 spectral range. Quantum chemical calculations at the B3LYP/6-311+G(d,p) level of theory were carried out to determine geometries, thermochemical data, and anharmonic vibrational properties of low-lying isomers, enabling to interpret the experimental spectrum. Evidence is gathered that the conjugate base of genistein exists as a single isomeric form, which is deprotonated at the most acidic site (7-OH) and benefits from a strong intramolecular H-bond interaction between 5-OH and the adjacent carbonyl oxygen in the most stable arrangement.

7.
Molecules ; 27(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35630621

RESUMEN

The sulfonamide-zinc ion interaction, performing a key role in various biological contexts, is the focus of the present study, with the aim of elucidating ligation motifs in zinc complexes of sulfa drugs, namely sulfadiazine (SDZ) and sulfathiazole (STZ), in a perturbation-free environment. To this end, an approach is exploited based on mass spectrometry coupled with infrared multiple photon dissociation (IRMPD) spectroscopy backed by quantum chemical calculations. IR spectra of Zn(H2O+SDZ-H)+ and Zn(H2O+STZ-H)+ ions are consistent with a three-coordinate zinc complex, where ZnOH+ binds to the uncharged sulfonamide via N(heterocycle) and O(sulfonyl) donor atoms. Alternative prototropic isomers Zn(OH2)(SDZ-H)+ and Zn(OH2)(STZ-H)+ lie 63 and 26 kJ mol-1 higher in free energy, respectively, relative to the ground state Zn(OH)(SDZ)+ and Zn(OH)(STZ)+ species and do not contribute to any significant extent in the sampled population.


Asunto(s)
Sulfonamidas , Zinc , Iones , Espectrofotometría Infrarroja , Sulfanilamida , Zinc/química
9.
Chemistry ; 28(33): e202200300, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35412692

RESUMEN

The structure of an isolated Ag+ (benzylamine) complex is investigated by infrared multiple photon dissociation (IRMPD) spectroscopy complemented with quantum chemical calculations of candidate geometries and their vibrational spectra, aiming to ascertain the role of competing cation-N and cation-π interactions potentially offered by the polyfunctional ligand. The IRMPD spectrum has been recorded in the 800-1800 cm-1 fingerprint range using the IR free electron laser beamline coupled with an FT-ICR mass spectrometer at the Centre Laser Infrarouge d'Orsay (CLIO). The resulting IRMPD pattern points toward a chelate coordination (N-Ag+ -π) involving both the amino nitrogen atom and the aromatic π-system of the phenyl ring. The gas-phase reactivity of Ag+ (benzylamine) with a neutral molecular ligand (L) possessing either an amino/aza functionality or an aryl group confirms N- and π-binding affinity and suggests an augmented silver coordination in the product adduct ion Ag + ( benzylamine ) ( L ) .


Asunto(s)
Bencilaminas , Plata , Cationes/química , Ligandos , Plata/química , Espectrofotometría Infrarroja/métodos
10.
Anal Chem ; 93(44): 14869-14877, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34714056

RESUMEN

Thyroid hormones are biologically active small molecules responsible for growth and development regulation, basal metabolic rate, and lipid and carbohydrate metabolism. Liquid chromatography mass spectrometry (LC-MS) can be used to quantify thyroid hormones blood level with high speed and selectivity, aiming to improve the diagnosis and treatment of the severe pathological conditions in which they are implicated, i.e., hypo- and hyperthyroidism. In this work, the gas-phase behavior of the isomeric thyroid hormones triiodothyronine (T3) and reverse triiodothyronine (rT3) in their deprotonated form was studied at a molecular level using MS-based techniques. Previously reported collision-induced dissociation experiments yielded distinct spectra despite the high structural similarity of the two compounds, suggesting different charge sites to be responsible. Infrared multiple photon dissociation spectroscopy on [T3-H]- and [rT3-H]- was performed, and the results were interpreted using DFT and MP2 calculations, assessing the prevalence of T3 in the carboxylate form and rT3 as a phenolate isomer. The different deprotonation sites of the two isomers were also found to drive their ion-mobility behavior. In fact, [T3-H]- and [rT3-H]- were successfully separated. Drift times were correlated with collisional cross section values of 209 and 215 Å2 for [T3-H]- and [rT3-H]-, respectively. Calculations suggested the charge site to be the main parameter involved in the different mobilities of the two anions. Finally, bare [T3-H]- and [rT3-H]- were made to react with neutral acetylacetone and trifluoroacetic acid, confirming rT3 to be more acidic than T3 in agreement with the calculated gas-phase acidities of T3 and rT3 equal to 1345 and 1326 kJ mol-1, respectively.


Asunto(s)
Triyodotironina Inversa , Triyodotironina , Cromatografía Liquida , Hormonas Tiroideas , Tiroxina
11.
Molecules ; 26(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34500850

RESUMEN

The metabolite profile of fresh Goji berries from two cultivars, namely Big Lifeberry (BL) and Sweet Lifeberry (SL), grown in the Lazio region (Central Italy) and harvested at two different periods, August and October, corresponding at the beginning and the end of the maturation, was characterized by means of nuclear magnetic resonance (NMR) and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR MS) methodologies. Several classes of compounds such as sugars, amino acids, organic acids, fatty acids, polyphenols, and terpenes were identified and quantified in hydroalcoholic and organic Bligh-Dyer extracts. Sweet Lifeberry extracts were characterized by a higher content of sucrose with respect to the Big Lifeberry ones and high levels of amino acids (glycine, betaine, proline) were observed in SL berries harvested in October. Spectrophotometric analysis of chlorophylls and total carotenoids was also carried out, showing a decrease of carotenoids during the time. These results can be useful not only to valorize local products but also to suggest the best harvesting period to obtain a product with a chemical composition suitable for specific industrial use. Finally, preliminary studies regarding both the chemical characterization of Goji leaves generally considered a waste product, and the biological activity of Big Lifeberry berries extracts was also investigated. Goji leaves showed a chemical profile rich in healthy compounds (polyphenols, flavonoids, etc.) confirming their promising use in the supplements/nutraceutical/cosmetic field. MG63 cells treated with Big Lifeberry berries extracts showed a decrease of iNOS, COX-2, IL-6, and IL-8 expression indicating their significant biological activity.


Asunto(s)
Antioxidantes/química , Lycium/química , Extractos Vegetales/química , Carotenoides/química , Ácidos Grasos/química , Frutas , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metabolómica , Polifenoles/química
12.
J Am Soc Mass Spectrom ; 32(8): 2206-2217, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34236851

RESUMEN

Methionine (Met) plays an important role in the metabolism of cisplatin anticancer drug. Yet, methionine platination in aqueous solution presents a highly complex pattern of interconnected paths and intermediates. This study reports on the reaction of methionine with the active aqua form of cisplatin, cis-[PtCl(NH3)2(H2O)]+, isolating the encounter complex of the reactant pair, {cis-[PtCl(NH3)2(H2O)]+·Met}, by electrospray ionization. In the unsolvated state, charged intermediates are characterized for their structure and photofragmentation behavior by IR ion spectroscopy combined with quantum-chemical calculations, obtaining an outline of the cisplatin-methionine reaction at a molecular level. To summarize the major findings: (i) the {cis-[PtCl(NH3)2(H2O)]+·Met} encounter complex, lying on the reaction coordinate of the Eigen-Wilkins preassociation mechanism for ligand substitution, is delivered in the gas phase and characterized by IR ion spectroscopy; (ii) upon vibrational excitation, ligand exchange occurs within {cis-[PtCl(NH3)2(H2O)]+·Met}, releasing water and cis-[PtCl(NH3)2(Met)]+, along the calculated energy profile; (iii) activated cis-[PtCl(NH3)2(Met)]+ ions undergo NH3 departure, forming a chelate complex, [PtCl(NH3)(Met)]+, whose structure is congruent with overwhelming S-Met ligation as the primary coordination step. The latter process involving ammonia loss marks a difference with the prevailing chloride replacement in protic solvent, pointing to the effect of a low-polarity environment.


Asunto(s)
Antineoplásicos/química , Cisplatino/química , Metionina/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrofotometría Infrarroja/métodos , Amoníaco/química , Quelantes/química , Ligandos , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Platino (Metal)/química , Soluciones , Solventes/química
13.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445631

RESUMEN

Pantothenic acid, also called vitamin B5, is an essential nutrient involved in several metabolic pathways. It shows a characteristic preference for interacting with Ca(II) ions, which are abundant in the extracellular media and act as secondary mediators in the activation of numerous biological functions. The bare deprotonated form of pantothenic acid, [panto-H]-, its complex with Ca(II) ion, [Ca(panto-H)]+, and singly charged micro-hydrated calcium pantothenate [Ca(panto-H)(H2O)]+ adduct have been obtained in the gas phase by electrospray ionization and assayed by mass spectrometry and IR multiple photon dissociation spectroscopy in the fingerprint spectral range. Quantum chemical calculations at the B3LYP(-D3) and MP2 levels of theory were performed to simulate geometries, thermochemical data, and linear absorption spectra of low-lying isomers, allowing us to assign the experimental absorptions to particular structural motifs. Pantothenate was found to exist in the gas phase as a single isomeric form showing deprotonation on the carboxylic moiety. On the contrary, free and monohydrated calcium complexes of deprotonated pantothenic acid both present at least two isomers participating in the gas-phase population, sharing the deprotonation of pantothenate on the carboxylic group and either a fourfold or fivefold coordination with calcium, thus justifying the strong affinity of pantothenate for the metal.


Asunto(s)
Calcio/química , Ácido Pantoténico/química , Gases/química , Fotones , Teoría Cuántica , Espectrofotometría Infrarroja
14.
Chemistry ; 27(7): 2348-2360, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175428

RESUMEN

The structures of proton-bound complexes of 5,7-dimethoxy-4H-chromen-4-one (1) and basic amino acids (AAs), namely, histidine (His) and lysine (Lys), have been examined by means of mass spectrometry coupled with IR ion spectroscopy and quantum chemical calculations. This selection of systems is based on the fact that 1 represents a portion of glabrescione B, a natural small molecule of promising antitumor activity, while His and Lys are protein residues lining the cavity of the alleged receptor binding site. These species are thus a model of the bioactive adduct, although clearly the isolated state of the present study bears little resemblance to the complex biological environment. A common feature of [1+AA+H]+ complexes is the presence of a protonated AA bound to neutral 1, in spite of the fact that the gas-phase basicity of 1 is comparable to those of Lys and His. The carbonyl group of 1 acts as a powerful hydrogen-bond acceptor. Within [1+AA+H]+ the side-chain substituents (imidazole group for His and terminal amino group for Lys) present comparable basic properties to those of the α-amino group, taking part to a cooperative hydrogen-bond network. Structural assignment, relying on the comparative analysis of the infrared multiple photon dissociation (IRMPD) spectrum and calculated IR spectra for the candidate geometries, derives from an examination over two frequency ranges: 900-1800 and 2900-3700 cm-1 . Information gained from the latter one proved especially valuable, for example, pointing to the contribution of species characterized by an unperturbed carboxylic OH or imidazole NH stretching mode.


Asunto(s)
Aminoácidos/química , Antineoplásicos/química , Espectrofotometría Infrarroja , Enlace de Hidrógeno , Fotones , Protones , Vibración
15.
Antioxidants (Basel) ; 9(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096834

RESUMEN

Torpedino di Fondi (TF) is a hybrid tomato landrace developed in Sicily and recently introduced in the south Lazio area along with the classical San Marzano (SM) cultivar. The present study aimed at characterizing TF tomatoes at both pink and red ripening stages, and at comparing them with traditional SM tomatoes. A multidisciplinary approach consisting of morphological, chemical (FT-ICR MS, NMR, HPLC, and spectrophotometric methods), and biological (antioxidant and antifungal in vitro activity) analyses was applied. Morphological analysis confirmed the mini-San Marzano nature and the peculiar crunchy and solid consistency of TF fruits. Pink TF tomatoes displayed the highest content of hydrophilic antioxidants, like total polyphenols (0.192 mg/g), tannins (0.013 mg/g), flavonoids (0.204 mg/g), and chlorophylls a (0.344 mg/g) and b (0.161 mg/g), whereas red TF fruits were characterized by the highest levels of fructose (3000 mg/100 g), glucose (2000 mg/100 g), tryptophan (2.7 mg/100 g), phenylalanine (13 mg/100 g), alanine (25 mg/100 g), and total tri-unsaturated fatty acids (13% mol). Red SM fruits revealed the greatest content of lipophilic antioxidants, with 1234 mg/g of total carotenoids. In agreement with phenolics content, TF cultivar showed the greatest antioxidant activity. Lastly, red TF inhibited Candida species (albicans, glabrata and krusei) growth.

16.
Angew Chem Int Ed Engl ; 59(36): 15595-15598, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32608165

RESUMEN

Platinum(IV) complexes are extensively studied for their activity against cancer cells as potential substitutes for the widely used platinum(II) drugs. PtIV complexes are kinetically inert and need to be reduced to PtII species to play their pharmacological action, thus acting as prodrugs. The mechanism of the reduction step inside the cell is however still largely unknown. Gas-phase activation of deprotonated platinum(IV) prodrugs was found to generate products in which platinum has a formal +3 oxidation state. IR multiple photon dissociation spectroscopy is thus used to obtain structural information helping to define the nature of both the platinum atom and the ligands. In particular, comparison of calculations at DFT, MP2 and CCSD levels with experimental results demonstrates that the localization of the radical is about equally shared between the dxz orbital of platinum and the pz of nitrogen on the amino group, the latter acting as a non-innocent ligand.

17.
J Mass Spectrom ; 55(11): e4525, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32368854

RESUMEN

Many plants of the genus Allium are widely cultivated and consumed for their nutraceutical and health-enhancing bioactive components effective in many metabolic and infectious diseases. In particular, Allium sativum L. (garlic), the most economically important Allium species, is known to present volatile, comparatively polar sulfur-containing compounds responsible for both the typical garlic aroma and antimicrobial property. More recently, the (moderately) polar portion of garlic metabolome, rich of polyphenols and amino acids, is gaining increasing interest as a source of antioxidants and primary nutrients. In this study, we have explored the chemical diversity of eight different hydroalcoholic extracts obtained by microwave-assisted extraction of white and red crop A. sativum and wild Allium triquetrum, Allium roseum, and Allium ampeloprasum, all originating from the Mediterranean Basin. The aim is to appraise their potential dietetic and healing value through an in-depth chemical characterization and contribute to preserve and exploit natural resources. The multimethodological method applied here is based on an untargeted metabolic profiling by means of high-resolution electrospray ionization Fourier-transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry. More than 850 by ESI(+) and 450 by ESI(-) putative metabolites have been annotated covering all main classes of primary and secondary metabolites, including amino acids, alkaloids, organic and fatty acids, nucleotides, vitamins, organosulfur compounds, and flavonoids. The pigment and polyphenol components have been separated and quantified by a targeted chromatographic high-performance liquid chromatography-photodiode array detector (HPLC-PDA) and CIEL*a*b* colorimetric assay, showing characteristic yellow and red components in each extract, related to a different milieu of anthocyanins and flavonoids as assigned by high-resolution mass spectrometry (MS).


Asunto(s)
Ajo/química , Metaboloma , Alcaloides/análisis , Aminoácidos/análisis , Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/análisis , Flavonoides/análisis , Metabolómica/métodos , Polifenoles/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Vitaminas/análisis
18.
J Biol Inorg Chem ; 25(4): 655-670, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32296997

RESUMEN

The study of Pt(IV) antitumor prodrugs able to circumvent some drawbacks of the conventional Pt(II) chemotherapeutics is the focus of a lot of attention. This paper reports a thorough study based on experimental methods (reduction kinetics, electrochemistry, tandem mass spectrometry and IR ion spectroscopy) and quantum-mechanical DFT calculations on the reduction mechanism of cisplatin-based Pt(IV) derivatives having two hydroxido (1), one hydroxido and one acetato (2), or two acetato ligands (3) in axial position. The biological reductants glutathione and ascorbic acid were taken into consideration. The presence of a hydroxido ligand resulted to play an important role in the chemical reduction with ascorbic acid, as verified by 15N-NMR kinetic analysis using 15N-enriched complexes. The reactivity trend (1 > 2 > 3) does not reflect the respective reduction peak potentials (1 < 2 < 3), an inverse relationship already documented in similar systems. Turning to a simplified environment, the Pt(IV) complexes associated with a single reductant molecule (corresponding to the encounter complex occurring along the reaction coordinate in bimolecular reactions in solution) were characterized by IR ion spectroscopy and sampled for their reactivity under collision-induced dissociation (CID) conditions. The complexes display a comparable reduction reactivity ordering as that observed in solution. DFT calculations of the free energy pathways for the observed fragmentation reactions provide theoretical support for the CID patterns and the mechanistic hypotheses on the reduction process are corroborated by the observed reaction paths. The bulk of these data offers a clue of the intricate pathways occurring in solution.Graphic abstract.


Asunto(s)
Antineoplásicos/química , Cisplatino/química , Compuestos Organoplatinos/química , Antineoplásicos/síntesis química , Antineoplásicos/aislamiento & purificación , Cisplatino/síntesis química , Cisplatino/aislamiento & purificación , Teoría Funcional de la Densidad , Conformación Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/aislamiento & purificación , Oxidación-Reducción , Estereoisomerismo
19.
J Am Soc Mass Spectrom ; 31(4): 946-960, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32233383

RESUMEN

The monofunctional primary complexes cis-[PtCl(NH3)2(L)]+, formed by the reaction of cisplatin, a major chemotherapeutic agent, with four nucleobases L, i.e., uracil (U), 2-thiouracil (2SU), 4-thiouracil (4SU), and 2,4-dithiouracil (24dSU), have been studied by a combination of infrared multiple photon dissociation (IRMPD) action spectroscopy in both the fingerprint (900-1900 cm-1) and the N-H/O-H stretching (3000-3800 cm-1) ranges, energy-resolved collision-induced dissociation (CID) mass spectrometry, and density functional calculations at the B3LYP/LACVP/6-311G** level. On the basis of the comparison across the experimental features and the linear IR spectra of conceivable structures, the cisplatin residue is found to promote a monodentate interaction preferentially with the O4(S4) atoms of the canonical forms of U, 4SU, and 24dSU and to the S2 atom of 2SU, yielding the most stable structures. Additional absorptions reveal the presence of minor, alternative tautomers in the sampled ion populations of 2SU and 24dSU, underlying the ability of cisplatin to increase the prospect of (therapeutically beneficial) nucleic acid strand disorder. Implication of these evidence may provide insights into drug mechanism and design.


Asunto(s)
Cisplatino/metabolismo , Espectrofotometría Infrarroja/métodos , Espectrometría de Masas en Tándem/métodos , Tiouracilo/metabolismo , Uracilo/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sitios de Unión , Cisplatino/química , Tiouracilo/análogos & derivados , Uracilo/química
20.
Chemphyschem ; 21(8): 749-761, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-31951044

RESUMEN

Protonation at the formyl oxygen atom of benzaldehydes leading to the formation of carboxonium ions yields two distinct isomers, depending on the relative orientation of the proton either cis or trans with respect to the hydrogen atom on the adjacent carbon. In this context, the IR multiple photon dissociation (IRMPD) spectra of protonated ortho, meta, and para-hydroxybenzaldehydes (OH-BZH+ ), delivered into the gas phase by electrospray ionization of hydro-alcoholic solutions, are reported in the 3200-3700 cm-1 spectral range. This range is characteristic of O-H stretching modes and thus able to differentiate cis and trans carboxonium isomers. Comparison between IRMPD spectra and DFT calculations at the B3LYP/6-311++G(2df2p) level suggests that for both p-OH-BZH+ and m-OH-BZH+ only cis conformers are present in the ion population analyzed. For o-OH-BZH+ , IRMPD spectroscopy points to a mixture comprising one trans and more than one cis conformers. The energy barrier for cis-trans isomerization calculated for each OH-BZH+ isomer is a measure of the degree of π-electron delocalization. Furthermore, IRMPD spectra of p-OH-BZH+ , m-OH-BZH+ and protonated phenol (this last used as reference) were recorded also in the fingerprint range. Both the observed C-O and O-H stretching vibrations appear to be a measure of π-electron delocalization in the ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...