Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 24(5): 518-537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669050

RESUMEN

Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.


Asunto(s)
Silicatos de Aluminio , Exobiología , Marte , Fenilalanina , Rayos Ultravioleta , Fenilalanina/química , Exobiología/métodos , Silicatos de Aluminio/química , Medio Ambiente Extraterrestre/química , Fotólisis , Ácidos Grasos/química , Ácidos Grasos/análisis
2.
Nature ; 619(7971): 724-732, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438522

RESUMEN

The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.

3.
Nat Commun ; 14(1): 808, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810853

RESUMEN

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Exobiología/métodos , Fósiles , Límite de Detección , Filogenia
4.
Science ; 378(6624): 1105-1110, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36417498

RESUMEN

The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.

5.
Astrobiology ; 21(5): 511-525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33493410

RESUMEN

The search for organic biosignatures on Mars will depend on finding material protected from the destructive ambient radiation. Solar ultraviolet can induce photochemical degradation of organic compounds, but certain clays have been shown to preserve organic material. We examine how the SHERLOC instrument on the upcoming Mars 2020 mission will use deep-ultraviolet (UV) (248.6 nm) Raman and fluorescence spectroscopy to detect a plausible biosignature of adenosine 5'-monophosphate (AMP) adsorbed onto Ca-montmorillonite clay. We found that the spectral signature of AMP is not altered by adsorption in the clay matrix but does change with prolonged exposure to the UV laser over dosages equivalent to 0.2-6 sols of ambient martian UV. For pure AMP, UV exposure leads to breaking of the aromatic adenine unit, but in the presence of clay the degradation is limited to minor alteration with new Raman peaks and increased fluorescence consistent with formation of 2-hydroxyadenosine, while 1 wt % Mg perchlorate increases the rate of degradation. Our results confirm that clays are effective preservers of organic material and should be considered high-value targets, but that pristine biosignatures may be altered within 1 sol of martian UV exposure, with implications for Mars 2020 science operations and sample caching.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Adenosina Monofosfato , Percloratos , Espectrometría de Fluorescencia , Rayos Ultravioleta
6.
Sci Rep ; 10(1): 15097, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934272

RESUMEN

The presence of organic matter in lacustrine mudstone sediments at Gale crater was revealed by the Mars Science Laboratory Curiosity rover, which also identified smectite clay minerals. Analogue experiments on phyllosilicates formed under low temperature aqueous conditons have illustrated that these are excellent reservoirs to host organic compounds against the harsh surface conditions of Mars. Here, we evaluate whether the capacity of smectites to preserve organic compounds can be influenced by a short exposure to different diagenetic fluids. We analyzed the stability of glycine embedded within nontronite samples previously exposed to either acidic or alkaline fluids (hereafter referred to as "treated nontronites") under Mars-like surface conditions. Analyses performed using multiple techniques showed higher photodegradation of glycine in the acid-treated nontronite, triggered by decarboxylation and deamination processes. In constrast, our experiments showed that glycine molecules were preferably incorporated by ion exchange in the interlayer region of the alkali-treated nontronite, conferring them a better protection against the external conditions. Our results demonstrate that smectite previously exposed to fluids with different pH values influences how glycine is adsorbed into their interlayer regions, affecting their potential for preservation of organic compounds under contemporary Mars surface conditions.

7.
Life (Basel) ; 8(4)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400661

RESUMEN

Minerals might have played critical roles for the origin and evolution of possible life forms on Mars. The study of the interactions between the "building blocks of life" and minerals relevant to Mars mineralogy under conditions mimicking the harsh Martian environment may provide key insight into possible prebiotic processes. Therefore, this contribution aims at reviewing the most important investigations carried out so far about the catalytic/protective properties of Martian minerals toward molecular biosignatures under Martian-like conditions. Overall, it turns out that the fate of molecular biosignatures on Mars depends on a delicate balance between multiple preservation and degradation mechanisms, often regulated by minerals, which may take place simultaneously. Such a complexity requires more efforts in simulating realistically the Martian environment in order to better inspect plausible prebiotic pathways and shed light on the nature of the organic compounds detected both in meteorites and on the surface of Mars through in situ analysis.

8.
Astrobiology ; 18(8): 989-1007, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30048146

RESUMEN

The adsorption of nucleic acid components onto the serpentinite-hosted hydrothermal mineral brucite has been investigated experimentally by determining the equilibrium adsorption isotherms in aqueous solution. Thermodynamic characterization of the adsorption data has been performed using the extended triple-layer model (ETLM) to establish a model for the stoichiometry and equilibrium constants of surface complexes. Infrared characterization of the molecule-mineral complexes has helped gain insight into the molecular functional groups directly interacting with the mineral surface. Quantum mechanical calculations have been carried out to identify the possible complexes formed on surfaces by nucleic acid components and their binding configurations on mineral surfaces, both in the presence of water molecules and in water-free conditions. The results indicate that brucite favors adsorption of nucleotides with respect to nucleosides and nucleobases from dilute aqueous environments. The surface of this mineral is able to induce well-defined orientations of the molecules through specific molecule-mineral interactions. This result suggests plausible roles of the mineral brucite in assisting prebiotic molecular self-organization. Furthermore, the detection of the infrared spectroscopic features of such building blocks of life adsorbed on brucite at very low degrees of coverage provides important support to life detection investigations.


Asunto(s)
Respiraderos Hidrotermales , Hidróxido de Magnesio/química , Silicatos de Magnesio/química , Minerales/química , Ácidos Nucleicos/química , Adsorción , Modelos Moleculares , Conformación Molecular , Propiedades de Superficie , Temperatura , Termodinámica
9.
Phys Chem Chem Phys ; 18(12): 8479-90, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26940362

RESUMEN

The accurate prediction of vibrational wavenumbers for functional groups involved in hydrogen-bonded bridges remains an important challenge for computational spectroscopy. For the specific case of the C=O and N-H stretching modes of nucleobases and their oligomers, the paucity of experimental reference values needs to be compensated by reliable computational data, which require the use of approaches going beyond the standard harmonic oscillator model. Test computations performed for model systems (formamide, acetamide and their cyclic homodimers) in the framework of the second order vibrational perturbation theory (VPT2) confirmed that anharmonic corrections can be safely computed by global hybrid (GHF) or double hybrid (DHF) functionals, whereas the harmonic part is particularly challenging. As a matter of fact, GHFs perform quite poorly and even DHFs, while fully satisfactory for C=O stretchings, face unexpected difficulties when dealing with N-H stretchings. On these grounds, a linear regression for N-H stretchings has been obtained and validated for the heterodimers formed by 4-aminopyrimidine with 6-methyl-4-pyrimidinone (4APM-M4PMN) and by uracil with water. In view of the good performance of this computational model, we have built a training set of B2PLYP-D3/maug-cc-pVTZ harmonic wavenumbers (including linear regression scaling for N-H) for six-different uracil dimers and a validation set including 4APM-M4PMN, one of the most stable hydrogen-bonded adenine homodimers, as well as the adenine-uracil, adenine-thymine, guanine-cytosine and adenine-4-thiouracil heterodimers. Because of the unfavourable scaling of DHF harmonic wavenumbers with the dimensions of the investigated systems, we have optimized a linear regression of B3LYP-D3/N07D harmonic wavenumbers for the training set, which has been next checked against the validation set. This relatively cheap model, which shows very good agreement with experimental data (average errors of about 10 cm(-1)), paves the route toward a reliable analysis of spectroscopic signatures for larger polynucleotides.


Asunto(s)
Ácidos Nucleicos/química , Adenina/química , Emparejamiento Base , Citosina/química , Dimerización , Guanina/química , Hidrógeno/química , Enlace de Hidrógeno , Modelos Moleculares , Nitrógeno/química , Oxígeno/química , Pirimidinonas/química , Espectrofotometría Infrarroja , Timina/química , Uracilo/análogos & derivados
10.
Phys Chem Chem Phys ; 17(40): 26710-23, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26395207

RESUMEN

The possibilities offered by organic fluorophores in the preparation of advanced plastic materials have been increased by designing novel alkynylimidazole dyes, featuring different push and pull groups. This new family of fluorescent dyes was synthesized by means of a one-pot sequential bromination-alkynylation of the heteroaromatic core, and their optical properties were investigated in tetrahydrofuran and in poly(methyl methacrylate). An efficient in silico pre-screening scheme was devised as consisting of a step-by-step procedure employing computational methodologies by simulation of electronic spectra within simple vertical energy and more sophisticated vibronic approaches. Such an approach was also extended to efficiently simulate one-photon absorption and emission spectra of the dyes in the polymer environment for their potential application in luminescent solar concentrators. Besides the specific applications of this novel material, the integration of computational and experimental techniques reported here provides an efficient protocol that can be applied to make a selection among similar dye candidates, which constitute the essential responsive part of those fluorescent plastic materials.

11.
J Phys Chem A ; 119(18): 4224-36, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25867793

RESUMEN

Hydrogen-bonding interactions lead to significant changes in the infrared (IR) spectrum, like frequency shifts of the order of magnitude of hundreds of cm(-1) and increases of IR intensity for bands related to vibrational modes of functional groups directly involved in the hydrogen-bonded bridges. We are actively developing a comprehensive and robust computational protocol aimed at the quantitative reproduction of the spectra of bio-organic and hybrid organic/inorganic molecular systems with a proper account of the variety of intra- and intermolecular interactions. We have resorted to fully anharmonic quantum mechanical computations within the generalized second-order vibrational perturbation theory (GVPT2) approach, combined with the B3LYP-D3 method, in conjunction with basis sets of double-ζ plus polarization quality. Such an approach has been validated in a previous work ( Phys. Chem. Chem. Phys. 2014 , 16 , 10112 - 10128 ) for simulating the IR spectra of the monomers of nucleobases and some of their dimers. In the present contribution we have extended our computational protocol toward hybrid models, with the harmonic part computed at the B2PLYP level, in conjunction with the maug-cc-pVTZ basis set, or by a cost-effective ONIOM B2PLYP:B3LYP focused model, where only part of the molecular system forming the hydrogen bonds is treated at the B2PLYP level of theory. In this work experimental frequencies available for a set of four uracil-water complexes have been considered as references for the computational methodologies applied to the simulation of hydrogen-bonding effects on the infrared spectrum, obtaining average uncertainties of about 22 cm(-1) for B3LYP-D3/N07D and improved description within 10 cm(-1) by hybrid B2PLYP/B3LYP-D3 approaches. The same computational schemes have been next applied to simulate fully anharmonic IR spectra of six different hydrogen-bonded uracil dimers, providing reliable support for future experimental investigations on hydrogen-bonded systems.


Asunto(s)
Teoría Cuántica , Uracilo/química , Agua/química , Dimerización , Enlace de Hidrógeno , Espectrofotometría Infrarroja
12.
J Phys Chem A ; 119(21): 5313-26, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25474755

RESUMEN

Feasible and comprehensive computational protocols for simulating the spectroscopic properties of large and complex molecular systems are very sought after. Indeed, due to the great variety of intra- and intermolecular interactions that may take place, the interpretation of experimental data becomes more and more difficult as the system under study increases in size or is placed in a complex environment, such as condensed phases. In this framework, we are actively developing a comprehensive and robust computational protocol aimed at quantitative reproduction of the spectra of nucleic acid base complexes, with increasing complexity toward condensed phases and monolayers of biomolecules on solid supports. We have resorted to fully anharmonic quantum mechanical computations within the generalized second-order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective B3LYP-D3 method, in conjunction with basis sets of double-ζ plus polarization quality. Such an approach has been validated in a previous work ( Phys. Chem. Chem. Phys. 2014 , 16 , 10112 - 10128 ) for simulating the IR spectra of the monomers of nucleobases and some of their dimers. In the present contribution we have extended such computational protocol to simulate spectroscopic properties of a molecular solid, namely polycrystalline uracil. First we have selected a realistic molecular model for representing the spectroscopic properties of uracil in the solid state, the uracil heptamer, and then we have computed the relative anharmonic frequencies combining less demanding approaches such as the hybrid B3LYP-D3/DFTBA one, in which the harmonic frequencies are computed at a higher level of theory (B3LYP-D3/N07D) whereas the anharmonic shifts are evaluated at a lower level of theory (DFTBA), and the reduced dimensionality VPT2 (RD-VPT2) approach, where only selected vibrational modes are computed anharmonically along with the couplings with other modes. The good agreement between the theoretical results and the experimental findings allowed us to extend the interpretation of experimental data. Our results indicate that hybrid and reduced dimensionality models pave a way for the definition of system-tailored computational protocols able to provide more and more accurate results for very large molecular systems, such as molecular solids and molecules adsorbed on solid supports.


Asunto(s)
Simulación por Computador , Espectrofotometría Infrarroja/métodos , Uracilo/química , Estudios de Factibilidad , Enlace de Hidrógeno , Modelos Químicos , Teoría Cuántica , Vibración
13.
Phys Chem Chem Phys ; 16(21): 10112-28, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24531740

RESUMEN

Computational spectroscopy techniques have become in the last few years an effective means to analyze and assign infrared (IR) spectra of molecular systems of increasing dimensions and in different environments. However, transition from compilation of harmonic data to fully anharmonic simulations of spectra is still underway. The most promising results for large systems have been obtained, in our opinion, by perturbative vibrational approaches based on potential energy surfaces computed by hybrid (especially B3LYP) density functionals and medium size (e.g. SNSD) basis sets. In this framework, we are actively developing a comprehensive and robust computational protocol aimed at quantitative reproduction of the spectra of nucleic acid base complexes and their adsorption on solid supports (organic/inorganic). In this contribution we report the essential results of the first step devoted to isolated monomers and dimers. It is well known that in order to model the vibrational spectra of weakly bound molecular complexes dispersion interactions should be taken into proper account. In this work we have chosen two popular and inexpensive approaches to model dispersion interactions, namely the semi-empirical dispersion correction (D3) and pseudopotential based (DCP) methodologies both in conjunction with the B3LYP functional. These have been used for simulating fully anharmonic IR spectra of nucleobases and their dimers through generalized second order vibrational perturbation theory (GVPT2). We have studied, in particular, isolated adenine, hypoxanthine, uracil, thymine and cytosine, the hydrogen-bonded and stacked adenine and uracil dimers, and the stacked adenine-naphthalene heterodimer. Anharmonic frequencies are compared with standard B3LYP results and experimental findings, while the computed interaction energies and structures of complexes are compared to the best available theoretical estimates.


Asunto(s)
Ácidos Nucleicos/química , Dimerización , Modelos Moleculares , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...