Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38512712

RESUMEN

The formation of complex three-dimensional organs during development requires precise coordination between patterning networks and mechanical forces. In particular, tissue folding is a crucial process that relies on a combination of local and tissue-wide mechanical forces. Here, we investigate the contribution of cell proliferation to epithelial morphogenesis using the Drosophila leg tarsal folds as a model. We reveal that tissue-wide compression forces generated by cell proliferation, in coordination with the Notch signaling pathway, are essential for the formation of epithelial folds in precise locations along the proximo-distal axis of the leg. As cell numbers increase, compressive stresses arise, promoting the folding of the epithelium and reinforcing the apical constriction of invaginating cells. Additionally, the Notch target dysfusion plays a key function specifying the location of the folds, through the apical accumulation of F-actin and the apico-basal shortening of invaginating cells. These findings provide new insights into the intricate mechanisms involved in epithelial morphogenesis, highlighting the crucial role of tissue-wide forces in shaping a three-dimensional organ in a reproducible manner.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila , Drosophila , Receptores Notch , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epitelio/metabolismo , Morfogénesis/genética , Transducción de Señal , Receptores Notch/metabolismo
2.
Dev Biol ; 454(2): 145-155, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31251896

RESUMEN

The specification and morphogenesis of an organ requires the coordinate deployment and integration of regulatory information, including sex specific information when the organ is sex specific. Only a few gene networks controlling size and pattern development have been deciphered, which limits the emergence of principles, general or not, underlying the organ-specifying gene networks. Here we elucidate the genetic and molecular network determining the control of size in the Drosophila abdominal A9 primordium, contributing to the female genitalia. This network requires axial regulatory information provided by the Hox protein Abdominal-BR (Abd-BR), the Hox cofactors Extradenticle (Exd) and Homothorax (Hth), and the sex specific transcription factor Doublesex Female (DsxF). These factors synergize to control size in the female A9 by the coordinate regulation of the Decapentaplegic (Dpp) growth pathway. Molecular dissection of the dpp regulatory region and in vivo protein interaction experiments suggest that Abd-BR, Exd, Hth and DsxF coordinately regulate a short dpp enhancer to repress dpp expression and restrict female A9 size. The same regulators can also suppress dpp expression in the A8, but this requires the absence of the Abd-BM isoform, which specifies A8. These results delineate the network controlling female A9 growth in Drosophila.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genitales Femeninos/crecimiento & desarrollo , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/crecimiento & desarrollo , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Genes de Insecto/genética , Proteínas de Homeodominio/metabolismo , Morfogénesis/genética , Proteínas Nucleares/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo
3.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29853618

RESUMEN

Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Matriz Extracelular/metabolismo , Proteínas de Homeodominio/biosíntesis , Discos Imaginales/embriología , Metaloproteinasa 1 de la Matriz/metabolismo , Factores de Transcripción/biosíntesis , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Matriz Extracelular/genética , Proteínas de Homeodominio/genética , Metaloproteinasa 1 de la Matriz/genética , Factores de Transcripción/genética
4.
Mech Dev ; 138 Pt 2: 210-217, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26259679

RESUMEN

Hox gene activity leads to morphological diversity of organs or structures in different species. One special case of Hox function is the elimination of a particular structure. The Abdominal-B Hox gene of Drosophila melanogaster provides an example of such activity, as this gene suppresses the formation of the seventh abdominal segment in the adult. This elimination occurs only in males, and is characteristic of more advanced Diptera. The elimination requires the differential expression or activity of genes that are downstream Abdominal-B, or that work together with it, and which regulate cell proliferation or cell extrusion. Here, we review the mechanisms responsible for such elimination and provide some new data on processes taking place within this segment.


Asunto(s)
Abdomen/embriología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Animales , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Morfogénesis/genética , Factores de Transcripción/genética
5.
Genes Dev ; 28(21): 2421-31, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25367037

RESUMEN

Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Homeostasis/genética , Insulina/metabolismo , Mucosa Intestinal/metabolismo , MicroARNs/metabolismo , Receptores Notch/metabolismo , Células Madre/citología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Diferenciación Celular , Proliferación Celular , Drosophila/citología , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , MicroARNs/genética , Transducción de Señal , Células Madre/metabolismo
6.
Methods Mol Biol ; 1196: 49-57, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25151157

RESUMEN

The Drosophila Gal4/UAS system allows the expression of any gene of interest in restricted domains. We devised a genetic strategy, based on the P-element replacement and UAS-y (+) techniques, to generate Gal4 lines inserted in Hox genes of Drosophila that are, at the same time, mutant for the resident genes. This makes possible to express different wild-type or mutant Hox proteins in the precise domains of Hox gene expression, and thus to test the functional value of these proteins in mutant rescue experiments.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Proteínas de Homeodominio/genética , Elementos Reguladores de la Transcripción , Factores de Transcripción/genética , Animales , Cruzamientos Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino
7.
PLoS Genet ; 8(8): e1002874, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912593

RESUMEN

The formation or suppression of particular structures is a major change occurring in development and evolution. One example of such change is the absence of the seventh abdominal segment (A7) in Drosophila males. We show here that there is a down-regulation of EGFR activity and fewer histoblasts in the male A7 in early pupae. If this activity is elevated, cell number increases and a small segment develops in the adult. At later pupal stages, the remaining precursors of the A7 are extruded under the epithelium. This extrusion requires the up-regulation of the HLH protein Extramacrochetae and correlates with high levels of spaghetti-squash, the gene encoding the regulatory light chain of the non-muscle myosin II. The Hox gene Abdominal-B controls both the down-regulation of spitz, a ligand of the EGFR pathway, and the up-regulation of extramacrochetae, and also regulates the transcription of the sex-determining gene doublesex. The male Doublesex protein, in turn, controls extramacrochetae and spaghetti-squash expression. In females, the EGFR pathway is also down-regulated in the A7 but extramacrochetae and spaghetti-squash are not up-regulated and extrusion of precursor cells is almost absent. Our results show the complex orchestration of cellular and genetic events that lead to this important sexually dimorphic character change.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptores ErbB/genética , Regulación del Desarrollo de la Expresión Génica/genética , Morfogénesis/genética , Pupa/genética , Receptores de Péptidos de Invertebrados/genética , Proteínas Represoras/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Evolución Biológica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Pupa/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Proteínas Represoras/metabolismo , Diferenciación Sexual , Factores Sexuales , Transducción de Señal/genética
8.
Int J Dev Biol ; 53(8-10): 1404-19, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19247930

RESUMEN

The Hox genes specify different structures along the anteroposterior axis of bilaterians. They code for transcription factors including a conserved domain, the homeodomain, that binds DNA. The specificity of Hox function is determined by each gene controlling the expression of different groups of downstream genes. These can be other transcription factors, elements in signaling pathways or realizator genes that carry out basic cellular functions. In regulating specific targets, the Hox genes interact with members of signaling pathways and with other proteins, thus forming part of gene networks that contribute to the modification of homologous structures or to the creation of new organs.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Homeodominio/fisiología , Familia de Multigenes , Organogénesis/fisiología , Animales , Apoptosis/genética , Apoptosis/fisiología , Tipificación del Cuerpo/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Modelos Biológicos , Organogénesis/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
Mech Dev ; 126(3-4): 99-106, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19118625

RESUMEN

The decapentaplegic (dpp) gene encodes a long-range morphogen that plays a key role in the patterning of the wing imaginal disc of Drosophila (Nellen, D., Burke, R., Struhl, G. and Basler, K. 1996. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357-368.). The current view is that dpp is transcriptionally active in a narrow band of anterior compartment cells close to the anterio-posterior (A/P) compartment border. Once the Dpp protein is synthesised, it travels across the A/P border and diffuses forming concentration gradients in the two compartments (reviewed in Lawrence, P.A., Struhl, G. 1996. Morphogens, compartments, and pattern: lessons from drosophila? Cell 85, 951-961.). We have found a new site of dpp expression in the posterior wing compartment which appears during the third larval period. This source of Dpp signal generates a local gradient of Dpp pathway activity, which is independent of that originating in the anterior compartment. We show that this posterior tier of Dpp activity is functionally required for normal wing development: the elimination of dpp expression in the posterior compartment results in defective adult wings in which pattern elements such as the alula and much of the axillary cord are not formed. Moreover, these structures develop normally in the absence of anterior dpp expression. Thus the normal wing pattern requires distinct Dpp organizer activities in the anterior and posterior compartments. We further show that, unlike the anterior dpp expression domain, the posterior one is not dependent on Hedgehog activity but is dependant on the activity of the IRO complex gene mirror. Since there is a similar expression in the haltere disc, we suggest that this late appearing posterior Dpp activity may be an attribute of dorsal thoracic discs.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Alas de Animales/embriología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Transducción de Señal , Transcripción Genética , Alas de Animales/citología , Alas de Animales/metabolismo
10.
Development ; 135(19): 3219-28, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18715947

RESUMEN

The Ultrabithorax (Ubx) gene of Drosophila specifies the third thoracic and first abdominal segments. Ubx expression is controlled by several mechanisms, including negative regulation by its own product. We show here that if Ubx expression levels are inappropriately elevated, overriding the auto-regulatory control, a permanent repression of Ubx is established. This continuous repression becomes independent of the presence of exogenous Ubx and leads to the paradoxical result that an excess of Ubx results in a phenotype of Ubx loss. The mechanism of permanent repression depends on Polycomb-group genes. Absence of endogenous Ubx transcription when Ubx levels are highly elevated probably activates Polycomb complexes on a Polycomb response element located in the Ubx major intron. This, in turn, brings about permanent repression of Ubx transcription. Similar results are obtained with the gene engrailed, showing that this mechanism of permanent repression may be a general one for genes with negative auto-regulation when levels of expression are transitorily elevated.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/genética , Genes Homeobox , Genes de Insecto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Cromosómicas no Histona/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Proteínas de Homeodominio/química , Modelos Biológicos , Familia de Multigenes , Fenotipo , Complejo Represivo Polycomb 1 , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/química
11.
Mech Dev ; 123(11): 860-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16971094

RESUMEN

The functional replacement of one gene product by another one is a powerful method to study specificity in development and evolution. In Drosophila, the Gal4/UAS method has been used to analyze in vivo such functional substitutions. To this aim, Gal4 lines that inactivate a gene and reproduce its expression pattern are required, and they can be frequently obtained by replacing pre-existing P-lacZ lines with such characteristics. We have devised a new method to quickly identify replacements of P-lacZ lines by P-Gal4 lines, and applied it successfully to obtain Gal4 insertions in the Ultrabithorax and Abdominal-B Hox genes. We have used these lines to study the functional replacement of a Hox gene by another one. Our experiments confirm that the abdominal-A gene can replace Ultrabithorax in haltere development but that it cannot substitute for Abdominal-B in the formation of the genitalia.


Asunto(s)
Drosophila melanogaster/genética , Genes de Insecto/genética , Genes Reporteros/genética , Operón Lac/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Animales , Color , Proteínas de Unión al ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Fenotipo , Pigmentación , Factores de Transcripción/metabolismo
12.
Development ; 133(1): 117-27, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16319117

RESUMEN

The genitalia of Drosophila derive from the genital disc and require the activity of the Abdominal-B (Abd-B) Hox gene. This gene encodes two different proteins, Abd-B M and Abd-B R. We show here that the embryonic genital disc, like the larval genital disc, is formed by cells from the eighth (A8), ninth (A9) and tenth (A10) abdominal segments, which most likely express the Abd-B M, Abd-B R and Caudal products, respectively. Abd-B m is needed for the development of A8 derivatives such as the external and internal female genitalia, the latter also requiring abdominal-A (abd-A), whereas Abd-B r shapes male genitalia (A9 in males). Although Abd-B r represses Abd-B m in the embryo, in at least part of the male A9 such regulation does not occur. In the male A9, some Abd-B m(-)r(-) or Abd-B r(-) clones activate Distal-less and transform part of the genitalia into leg or antenna. In the female A8, many Abd-B m(-)r(-) mutant clones produce similar effects, and also downregulate or eliminate abdominal-A expression. By contrast, although Abd-B m is the main or only Abd-B transcript present in the female A8, Abd-B m(-) clones induced in this primordium do not alter Distal-less or abd-A expression, and transform the A8 segment into the A4. The relationship between Abd-B and abd-A in the female genital disc is opposite to that of the embryonic epidermis, and contravenes the rule that posteriorly expressed Hox genes downregulate more anterior ones.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila , Regulación del Desarrollo de la Expresión Génica/fisiología , Genitales/embriología , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Genitales/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...