Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 24, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177193

RESUMEN

Scientific bottom-trawl surveys are ecological observation programs conducted along continental shelves and slopes of seas and oceans that sample marine communities associated with the seafloor. These surveys report taxa occurrence, abundance and/or weight in space and time, and contribute to fisheries management as well as population and biodiversity research. Bottom-trawl surveys are conducted all over the world and represent a unique opportunity to understand ocean biogeography, macroecology, and global change. However, combining these data together for cross-ecosystem analyses remains challenging. Here, we present an integrated dataset of 29 publicly available bottom-trawl surveys conducted in national waters of 18 countries that are standardized and pre-processed, covering a total of 2,170 sampled fish taxa and 216,548 hauls collected from 1963 to 2021. We describe the processing steps to create the dataset, flags, and standardization methods that we developed to assist users in conducting spatio-temporal analyses with stable regional survey footprints. The aim of this dataset is to support research, marine conservation, and management in the context of global change.


Asunto(s)
Biodiversidad , Peces , Animales , Ecosistema , Explotaciones Pesqueras , Océanos y Mares
3.
Glob Chang Biol ; 27(18): 4307-4321, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34106494

RESUMEN

Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics. Here, we used eco-evolutionary simulations to examine coral adaptation to warming across reef networks in the Caribbean, the Southwest Pacific, and the Coral Triangle. We assessed the factors associated with coral persistence in multiple reef systems to understand which results are general and which are sensitive to particular geographic contexts. We found that evolution can be critical in preventing extinction and facilitating the long-term recovery of coral communities in all regions. Furthermore, the strength of immigration to a reef (destination strength) and current sea surface temperature robustly predicted reef persistence across all reef networks and across temperature projections. However, we found higher initial coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which has a greater number of reefs and more larval settlement than the other regions. We also found the lowest projected future coral cover in the Caribbean. These findings suggest that coral reef persistence depends on ecology, evolution, and habitat network characteristics, and that, under an emissions stabilization scenario (RCP 4.5), recovery may be possible over multiple centuries.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Cambio Climático , Ecosistema , Temperatura
4.
Ecology ; 102(7): e03381, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33942289

RESUMEN

Global environmental change is challenging species with novel conditions, such that demographic and evolutionary trajectories of populations are often shaped by the exchange of organisms and alleles across landscapes. Current ecological theory predicts that random networks with dispersal shortcuts connecting distant sites can promote persistence when there is no capacity for evolution. Here, we show with an eco-evolutionary model that dispersal shortcuts across environmental gradients instead hinder persistence for populations that can evolve because long-distance migrants bring extreme trait values that are often maladaptive, short-circuiting the adaptive response of populations to directional change. Our results demonstrate that incorporating evolution and environmental heterogeneity fundamentally alters theoretical predictions regarding persistence in ecological networks.


Asunto(s)
Evolución Biológica , Ecosistema , Modelos Biológicos , Fenotipo , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...