Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 179: 108149, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37634297

RESUMEN

The urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) has recently attracted a lot of attention attributing to its efficiency in reducing ammonia loss from urea fertiliser applied to temperate grassland soils. Ammonia gas lost to the environment causes soil acidification, eutrophication and contributes to global warming through increased greenhouse gas emissions and ozone layer depletion. The active chemical NBPT blocks the soil microbial enzyme (urease) and reduces ammonia emission. Furthermore, NBPT's use in agriculture might benefit farmers by reducing reliance on expensive nitrate fertiliser and aiding in a shift to more urea-based fertiliser (using NBPT co-applied with urea is more cost-effective). The present study was carried out to characterise the potential transfer of NBPT from grass to liquid milk and compute the associated human health risks. Using probabilistic risk assessment techniques, an exposure assessment model was developed to calculate the Estimated Daily Intake (EDI) of NBPT from milk, following co-application of NBPT with a urea N-fertiliser. Results show that the predicted mean concentration of NBPT in milk is 2.5 × 10-8 mg NBPT/kg milk, while the mean daily intake (EDI) of NBPT is 5 × 10-11 mg NBPT /kg BW/day). Back-calculations revealed that, under the studied conditions, for the EDI to exceed ADI of 3 × 10-2 mg NBPT/kg BW/ day, the NBPT application rate would need to exceed the NBPT fertiliser limit (0.09-0.2% by mass of urea nitrogen) set in the Commission Regulation (EC) No 1107/2008, and the bio-transfer factor would need to be over 100% (implausible). Sensitivity analysis revealed soil pH (SPH), phytoaccumulation factor (PF), NBPT permissible levels in fertiliser (NBPT%), pasture cover (P), and grazing rotation length (t) as critical factors influencing the EDI of NBPT. The present study concludes that NBPT presents negligible risk to human health under the conditions and assumptions studied.


Asunto(s)
Amoníaco , Ureasa , Humanos , Fertilizantes , Agricultura , Eutrofización
2.
Plants (Basel) ; 12(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570915

RESUMEN

Various nutrient recycling technologies are currently under development in order to alleviate the dependency of non-renewable raw material for the production of mineral phosphorus fertilizers commonly used in agriculture. The resulting products, such as struvites and ashes, need to be assessed for their application as so-called recycling-derived fertilizers (RDFs) in the agricultural sector prior to commercialization. Here, we conducted a short-term (54 days) trial to investigate the impact of different phosphorus fertilizers on plant growth and the soil P cycling microbiota. Lolium perenne was grown with application of superphosphate (SP) as inorganic fertilizer, two ashes (poultry litter ash (PLA) and sewage sludge ash (SSA)), and two struvites (municipal wastewater struvite (MWS) and commercial CrystalGreen® (CGS)) applied at 20 and 60 kg P ha-1 in four replicates. A P-free control (SP0) was also included in the trial. Struvite application increased plant dry weights, and available P acid phosphatase activity was significantly improved for struvites at the high P application rate. The ash RDFs showed a liming effect at 60 kg P ha-1, and PLA60 negatively affected acid phosphatase activity, while PLA20 had significantly lower phoD copy numbers. P mobilization from phosphonates and phytates was not affected. TCP solubilization was negatively affected by mineral SP fertilizer application at both P concentrations. The bacterial (16S and phoD) communities were only marginally affected by the tested P fertilizers. Overall, struvites appeared to be a suitable substitute for superphosphate fertilization for Irish L. perenne pastures.

3.
Environ Sci Pollut Res Int ; 30(36): 85482-85493, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37389750

RESUMEN

Grass uptake and phytoaccumulation factors of N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiamide (DCD) were quantified. Following the application of urea fertilizer treated with the inhibitors in Irish grassland, grass samples were collected at 5, 10, 15, 20, and 30 day time intervals following five application cycles. Uptake of NBPT by grass was below the limit of quantitation of the analytical method (0.010 mg NBPT kg-1). Dicyandiamide concentrations in grass ranged from 0.004 to 28 mg kg-1 with the highest concentrations measured on days 5 and 10. A reducing trend in concentration was found after day 15. The DCD phytoaccumulation factor was ranged from 0.004% to 1.1% showing that DCD can be taken up by grass at low levels when co-applied with granular urea. In contrast, NBPT was not detected indicating that grass uptake is unlikely when co-applied with granular urea fertilizer. The contrasting results are likely due to very different longevity of DCD and NBPT along with the much lower rate of NBPT, which is used compared with DCD.


Asunto(s)
Poaceae , Ureasa , Urea , Nitrificación , Fertilizantes/análisis , Inhibidores Enzimáticos/farmacología , Suelo , Nitrógeno
4.
Rev Environ Health ; 36(4): 477-491, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34821117

RESUMEN

OBJECTIVE: Urea is one of the most widely used commercial fertilisers worldwide due to its high N density and cost effectiveness. However, it can be lost in the form of gaseous ammonia and other greenhouse gas (GHG) emissions which can potentially lead to environmental pollution. Farmers are compelled to apply more urea to account for those losses, thereby increasing their expenditure on fertilization. The objective of this paper is to present a literature review on current knowledge regarding inhibitor technologies such as urease inhibitor; n-(N-butyl) thiophosphoric triamide (NBPT), and nitrification inhibitor; dicyandiamide (DCD). METHODS: A thorough review of all the scientific literature was carried out and a proposed risk assessment framework developed. RESULTS: The study showed that the urease inhibitor NBPT significantly reduced NH3 loss from urea. However, concerns about NBPT safety to human health had been raised when the nitrification inhibitor DCD appeared as a residue in milk. This article presents a risk assessment framework for evaluating human exposure to chemicals like NBPT or DCD, following the consumption of foods of animal origin (e.g. milk) from cows grazing on inhibitor-treated pasture. CONCLUSION: The EU's target of a 40% reduction of greenhouse gas emissions by 2030 can be aided by using NBPT as part of an overall suite of solutions. A comprehensive risk assessment is advised for effective evaluation of potential risks from exposure to these inhibitors.


Asunto(s)
Nitrificación , Ureasa , Animales , Bovinos , Fertilizantes/análisis , Humanos , Suelo , Tecnología , Ureasa/metabolismo
5.
Molecules ; 26(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068145

RESUMEN

N-(n-butyl) thiophosphoric triamide (NBPT) is a urease inhibitor utilised in urea-based fertilizers. In Ireland, fertilizer treated with NBPT is applied to pasture to mitigate both ammonia and nitrous oxide emissions, but concerns arise as to the potential for residues in milk products. A quick ultrafiltration extraction and ultra-high performance liquid chromatography coupled with mass spectrometry triple quadrupole (UHPLC-MS/MS) quantitation method was developed and validated in this study. The method was applied in the analysis of samples collected from a field study investigating potential transfer of NBPT residues into milk. NBPT and NBPTo residues, were extracted from fortified milk samples and analysed on a UHPLC-MS/MS with recoveries ranging from 74 to 114%. Validation of the UHPLC-MS/MS method at low (0.0020 mg kg-1) and high (0.0250 mg kg-1) concentration levels in line with SANTE/12682/2019 showed overall trueness in the range of 99 to 104% and precision between 1 and 10%, RSD for both compounds. The limit of quantitation (LOQ) was 0.0020 mg kg-1 and other tested parameters (linearity, sensitivity, specificity, matrix effect, robustness, etc.) satisfied acceptance criteria. Stability assessment using spiked samples revealed the compounds were stable in raw and pasteurised milk for 4 weeks at -80 °C storage temperature. Maintaining samples at pH 8.5-9.0 further improved stability. Analysis of 516 milk samples from the field study found that NBPT and NBPTo concentrations were below the LOQ of 0.0020 mg kg-1, thus suggesting very low risk of residues occurring in the milk. The method developed is quick, robust, and sensitive. The method is deemed fit-for-purpose for the simultaneous determination of NBPT and NBPTo in milk.


Asunto(s)
Amidas/análisis , Leche/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Solventes/química , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión , Granjas , Reproducibilidad de los Resultados
6.
Sci Total Environ ; 785: 147251, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940410

RESUMEN

Phosphorus (P) is an essential life-supporting nutrient for which there is no substitute. Modern farming practice and food production are supported by the application of mineral P fertiliser derived from finite mined phosphate rock. The European Union does not have indigenous mineral phosphate reserves, which poses a significant issue to food security. This research paper assesses the potential of indigenous recycled P sources to replace imported P fertiliser within the Republic of Ireland. The research is undertaken at NUTS 3 (Nomenclature of Territorial Units) regional level, the nutrient soil P requirement is established, and the extent to which the regional production of indigenous recycled P sources can offset this requirement is determined. The soil P requirement was derived from analyzing the regional soil P indexes, stocking rate and land-use. It was established that to optimise Irish agricultural production, approximately 95,500 t of P fertiliser is required by Irish agriculture per annum. Indigenous P sources were reviewed to determine their contribution to the Irish P balance; the sources included sewage sludge, dairy processing waste, and animal manures. Regional indigenous P quantities vary greatly with the South-West Region producing the largest quantity of indigenous recycled P at 42.4% of required P than the Mid-West Region only producing 22.0% of its P requirement indigenously. Sources of indigenous P also vary greatly from region to region depending on population and industry, with the highest quantity of sewage sludge being produced in the Dublin plus Mid-East Region while the greatest contributor of dairy waste is the South-West Region. In total, over 28,500 t of P is recovered from indigenous sources per annum. This indicates that approximately 30% of the national P requirement could be met by indigenous P recycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...