Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 7(2): 2176-2189, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38410412

RESUMEN

Synergistic combination therapy approach offers lots of options for delivery of materials with anticancer properties, which is a very promising strategy to treat a variety of malignant lesions with enhanced therapeutic efficacy. The current study involves a detailed investigation of combination ionic nanomedicines where a chemotherapeutic drug is coupled with a photothermal agent to attain dual mechanisms (chemotherapy (chemo) and photothermal therapy (PTT)) to improve the drug's efficacy. An FDA-approved Doxorubicin hydrochloride (DOX·HCl) is electrostatically attached with a near-infrared cyanine dye (ICG, IR783, and IR820), which serves as a PTT drug using ionic liquid chemistry to develop three ionic material (IM)-based chemo-PTT drugs. Carrier-free ionic nanomedicines (INMs) are derived from ionic materials (IMs). The photophysical properties of the developed combination IMs and their INMs were studied in depth. The phototherapeutic efficiency of the combination drugs was evaluated by measuring the photothermal conversion efficiency and singlet-oxygen quantum yield. The improved photophysical properties of the combination nanomedicines in comparison to their parent compounds significantly enhanced INMs' photothermal efficiency. Cellular uptake, dark and light toxicity studies, and cell death mechanisms of the chemo-PTT nanoparticles were also studied in vitro. The combination INMs exhibited enhanced cytotoxicity compared to their respective parent compounds. Moreover, the apoptosis cell death mechanism was almost doubled for combination nanomedicine than the free DOX, which is attributed to enhanced cellular uptake. Examination of the combination index and improved in vitro cytotoxicity results revealed a great synergy between chemo and PTT drugs in the developed combination nanomedicines.

2.
ACS Appl Bio Mater ; 6(12): 5662-5675, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38063308

RESUMEN

This study presents the synthesis and characterization of monosubstituted cationic porphyrin as a photodynamic therapeutic agent. Cationic porphyrin was converted into ionic materials by using a single-step ion exchange reaction. The small iodide counteranion was replaced with bulky BETI and IR783 anions to reduce aggregation and enhance the photodynamic effect of porphyrin. Carrier-free ionic nanomedicines were then prepared by using the reprecipitation method. The photophysical characterization of parent porphyrin, ionic materials, and ionic nanomaterials, including absorbance, fluorescence and phosphorescence emission, quantum yield, radiative and nonradiative rate, and lifetimes, was performed. The results revealed that the counteranion significantly affects the photophysical properties of porphyrin. The ionic nanomaterials exhibited an increase in the reactive oxygen yield and enhanced cytotoxicity toward the MCF-7 cancer cell line. Examination of results revealed that the ionic materials exhibited an enhanced photodynamic therapeutic activity with a low IC50 value (nanomolar) in cancerous cells. These nanomedicines were mainly localized in the mitochondria. The improved light cytotoxicity is attributed to the enhanced photophysical properties and positive surface charge of the ionic nanomedicines that facilitate efficient cellular uptake. These results demonstrate that ionic material-based nanodrugs are promising photosensitizers for photodynamic therapy.


Asunto(s)
Fotoquimioterapia , Porfirinas , Humanos , Porfirinas/farmacología , Nanomedicina , Fármacos Fotosensibilizantes/farmacología , Cationes
3.
Artículo en Inglés | MEDLINE | ID: mdl-38173822

RESUMEN

FÓ§rster resonance energy transfer (FRET)-based systems are widely applicable in many areas of interest. In this study, a novel FRET-based ionic material (IM) was synthesized by pairing carbazole imidazolium cation (CI+) with fluorescein anion (Fl2-) through a simple ion-exchange method. The resulting IM ([CI]2[Fl]) was converted into an ionic nanoparticle (INP) in aqueous media for practical use for bioimaging application. The photophysical properties of the parent dyes, [CI]2[Fl], and INP were studied in detail. All FRET parameters were calculated in the synthesized material. [CI]2[Fl] exhibited a significant spectral overlap integral and an ideal theoretical FRET distance. The presence of the FRET mechanism was verified by the observed decrease in donor fluorescence lifetime and a moderate FRET efficiency in [CI]2[Fl]. The INP formed from [CI]2[Fl] was evaluated for use as a fluorescent pH probe and bioimaging agent. FRET efficiency of INP is calculated in a series of pH studies which indicates the highest efficiency at physiological pH. Whereas no FRET phenomenon is observed in highly acidic and basic conditions. The pH-dependent photophysical properties of [CI]2[Fl] are monitored and allow for the potential application as a fluorescent probe for the detection of acidic tissues in biological systems. The FRET-capable INP showed superior bioimaging capability in vitro as compared to the parent dye.

4.
J Biochem Technol ; 14(3): 50-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179150

RESUMEN

In this study, the application of ionic materials as a combination antibiotic drug was investigated. The fluoroquinolone, Norfloxacin, was converted into the ionic form and combined with the cationic dye, IR780+, using an ion-exchange reaction. The resulting ionic combination drug possesses two killing mechanisms in one compound. The antibiotic chemical mechanism along with the photothermal mechanism that was acquired by adding IR780 to the compound led to the development of a combination antibiotic drug. This ionic combination drug consisting of Norfloxacin anion and IR780 cation is easily dispersed in water using sonication waves. The parent compounds and ionic combination drug, dissolved in organic solvent and dispersed in water, were characterized, and the photophysical properties were studied in detail. It was discovered that the aqueous ionic combination drugs exhibited significant changes in absorbance and photoluminescent properties. In aqueous media, the dispersed ionic combination drug exhibited a very broad absorbance with an additional peak around 1000 nm which is advantageous in photothermal. A significant decrease in the quantum yield along with enhanced non-radiative rate constant was observed for the combination drug in the aqueous. The photothermal mechanism is present in both the parent IR780 dye and the ionic combination drug. The ionic combination drug displayed a high light-to-heat conversion efficiency and temperature increase similar to the parent dye. The combination of both killing mechanisms in the ionic combination drug resulted in enhanced antibacterial activity against Escherichia coli as compared to the parent Norfloxacin and IR780-I individually.

5.
Sustain Chem ; 2(4): 564-575, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35350442

RESUMEN

Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820-, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820- absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...