Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Vaccines (Basel) ; 11(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38006057

RESUMEN

Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier-to-use, and more cost-effective means for the administration of vaccines than injection by needle and syringe. Here, we report findings from a randomized, partially double-blinded, placebo-controlled Phase I trial using the Vaxxas high-density MAP (HD-MAP) to deliver a measles rubella (MR) vaccine. Healthy adults (N = 63, age 18-50 years) were randomly assigned 1:1:1:1 to four groups: uncoated (placebo) HD-MAPs, low-dose MR HD-MAPs (~3100 median cell-culture infectious dose [CCID50] measles, ~4300 CCID50 rubella); high-dose MR-HD-MAPs (~9300 CCID50 measles, ~12,900 CCID50 rubella); or a sub-cutaneous (SC) injection of an approved MR vaccine, MR-Vac (≥1000 CCID50 per virus). The MR vaccines were stable and remained viable on HD-MAPs when stored at 2-8 °C for at least 24 months. When MR HD-MAPs stored at 2-8 °C for 24 months were transferred to 40 °C for 3 days in a controlled temperature excursion, loss of potency was minimal, and MR HD-MAPs still met World Health Organisation (WHO) specifications. MR HD-MAP vaccination was safe and well-tolerated; any systemic or local adverse events (AEs) were mild or moderate. Similar levels of binding and neutralizing antibodies to measles and rubella were induced by low-dose and high-dose MR HD-MAPs and MR-Vac. The neutralizing antibody seroconversion rates on day 28 after vaccination for the low-dose HD-MAP, high-dose HD-MAP and MR-Vac groups were 37.5%, 18.8% and 35.7%, respectively, for measles, and 37.5%, 25.0% and 35.7%, respectively, for rubella. Most participants were seropositive for measles and rubella antibodies at baseline, which appeared to negatively impact the number of participants that seroconverted to vaccines delivered by either route. The data reported here suggest HD-MAPs could be a valuable means for delivering MR-vaccine to hard-to-reach populations and support further development. Clinical trial registry number: ACTRN12621000820808.

2.
BMJ Glob Health ; 8(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37827725

RESUMEN

BACKGROUND: Microarray patches (MAPs) deliver vaccines to the epidermis and the upper dermis, where abundant immune cells reside. There are several potential benefits to using MAPs, including reduced sharps risk, thermostability, no need for reconstitution, tolerability and self-administration. We aimed to explore and evaluate the immunogenicity, safety, usability and acceptability of MAPs for vaccination. METHODS: We searched CINAHL, Cochrane Library, Ovid Embase, Ovid MEDLINE and Web of Science from inception to January 2023. Eligibility criteria included all research studies in any language, which examined microarrays or microneedles intended or used for vaccination and explored immunogenicity, safety, usability or acceptability in their findings. Two reviewers conducted title and abstract screening, full-text reviewing and data extraction. RESULTS: Twenty-two studies were included (quantitative=15, qualitative=2 and mixed methods=5). The risk of bias was mostly low, with two studies at high risk of bias. Four clinical trials were included, three using influenza antigens and one with Japanese encephalitis delivered by MAP. A meta-analysis indicated similar or higher immunogenicity in influenza MAPs compared with needle and syringe (N&S) (standardised mean difference=10.80, 95% CI: 3.51 to 18.08, p<0.00001). There were no significant differences in immune cell function between MAPs and N&S. No serious adverse events were reported in MAPs. Erythema was more common after MAP application than N&S but was brief and well tolerated. Lower pain scores were usually reported after MAP application than N&S. Most studies found MAPs easy to use and highly acceptable among healthcare professionals, laypeople and parents. CONCLUSION: MAPs for vaccination were safe and well tolerated and evoked similar or enhanced immunogenicity than N&S, but further research is needed. Vaccine uptake may be increased using MAPs due to less pain, enhanced thermostability, layperson and self-administration. MAPs could benefit at-risk groups and low and middle-income countries. PROSPERO REGISTRATION NUMBER: CRD42022323026.


Asunto(s)
Gripe Humana , Vacunas , Humanos , Vacunación , Dolor/etiología , Dolor/prevención & control
3.
J Control Release ; 361: 236-245, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37437849

RESUMEN

Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Humanos , Administración Cutánea , Epidermis , Agujas , Preparaciones Farmacéuticas , Medición de Riesgo , Ensayos Clínicos Fase III como Asunto
4.
Hum Vaccin Immunother ; 18(4): 2050123, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35356872

RESUMEN

Continued advances in microarray patch (MAP) technology are starting to make needle-free delivery of a broad range of vaccines an achievable goal. The drivers and potential benefits of a MAP platform for pandemic response and routine vaccination are clear and include dose-sparing, cold-chain elimination, increased safety, and potential self-administration. MAP technology is regarded as a priority innovation to overcome vaccination barriers, ensure equitable access, and improve the effectiveness of vaccines. Vaxxas, a global leader in this technology, has built a strong evidence-base for the commercial application of their high-density (HD) MAP platform, and is rapidly advancing scale-up of the manufacturing process for HD-MAPs. A greater awareness and understanding of the implications of the technology amongst supply-chain participants, regulatory authorities, and global healthcare organizations and foundations is needed to accelerate adoption and, particularly, to prepare for MAP use in pandemics. Key challenges remain in the commercialization of MAP technology and its adoption, including market acceptance, scale-up of production, regulatory approval, and the availability of capital to build advanced manufacturing infrastructure ahead of late-stage clinical trials.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/prevención & control , Pandemias/prevención & control , Vacunación
5.
Hum Vaccin Immunother ; 18(4): 2018863, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35100525

RESUMEN

BACKGROUND: High-density microarray patch (HD-MAP) vaccines may increase vaccine acceptance and use. We aimed to ascertain whether professional immunizers (PIs) and other healthcare workers (HCWs) in Australia, a High-Income Country (HIC), found the HD-MAP applicator usable and acceptable for vaccine delivery. METHODS: This feasibility study recruited PIs and HCWs to administer/receive simulated HD-MAP administration, including via self-administration. We assessed usability against essential and desirable criteria. Participants completed a survey, rating their agreement to statements about HD-MAP administration. A subset also participated in an interview or focus group. Survey data were analyzed using descriptive statistics, and interviews were transcribed and subject to thematic analysis. RESULTS: We recruited 61 participants: 23 PIs and 38 HCWs. Findings indicated high usability and acceptability of HD-MAP use across both groups by a healthcare professional or trained user and for self-administration with safety measures in place. Most administrations met essential criteria, but PIs, on average, applied the HD-MAP for slightly less time than the required 10-seconds, which the HCWs achieved. PIs perceived safety concerns about home administration but found layperson self-administration acceptable in an emergency, pandemic, and rural or remote settings. CONCLUSIONS: Participants found HD-MAP administration usable and acceptable. Usability and acceptability are likely to be improved through end-user education and training.


Professional immunizers and healthcare workers found high-density microarray patch devices highly usable and acceptable to administer vaccines.HD-MAPs may have advantages over intramuscular injections in clinical settings and in pandemics.Vaccination with HD-MAP may improve acceptance for those with needle-related anxiety.


Asunto(s)
Vacunación , Vacunas , Australia , Estudios de Factibilidad , Personal de Salud , Humanos
6.
PLoS One ; 16(7): e0255282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34329337

RESUMEN

Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 µg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 µg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 µg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Sistemas de Liberación de Medicamentos , Inmunidad Celular/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Piel/inmunología , Adulto , Antígenos CD/inmunología , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Masculino , Persona de Mediana Edad , Factores de Tiempo
7.
Hum Vaccin Immunother ; 17(8): 2501-2516, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33957843

RESUMEN

Measles (Me) and rubella (Ru) viral diseases are targeted for elimination by ensuring a high level of vaccination coverage worldwide. Less costly, more convenient MeRu vaccine delivery systems should improve global vaccine coverage, especially in low - and middle - income countries (LMICs). In this work, we examine formulating a live, attenuated Me and Ru combination viral vaccine with Nanopatch™, a solid polymer micro-projection array for intradermal delivery. First, high throughput, qPCR-based viral infectivity and genome assays were established to enable formulation development to stabilize Me and Ru in a scaled-down, custom-built evaporative drying system to mimic the Nanopatch™ vaccine coating process. Second, excipient screening and optimization studies identified virus stabilizers for use during the drying process and upon storage in the dried state. Finally, a series of real-time and accelerated stability studies identified eight candidate formulations that met a target thermal stability criterion for live vaccines (<1 log10 loss after 1 week storage at 37°C). Compared to -80°C control samples, the top candidate formulations resulted in minimal viral infectivity titer losses after storage at 2-8°C for 6 months (i.e., <0.1 log10 for Me, and ~0.4 log10 for Ru). After storage at 25°C over 6 months, ~0.3-0.5 and ~1.0-1.4 log10 titer losses were observed for Me and Ru, respectively, enabling the rank-ordering of the stability of candidate formulations. These results are discussed in the context of future formulation challenges for developing microneedle-based dosage forms containing stabilized live, attenuated viral vaccines for use in LMICs.


Asunto(s)
Sarampión , Rubéola (Sarampión Alemán) , Vacunas Virales , Humanos , Sarampión/prevención & control , Vacuna Antisarampión , Rubéola (Sarampión Alemán)/prevención & control , Vacuna contra la Rubéola , Vacunas Atenuadas
8.
Sci Rep ; 10(1): 18468, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116241

RESUMEN

The development of microarray patches for vaccine application has the potential to revolutionise vaccine delivery. Microarray patches (MAP) reduce risks of needle stick injury, do not require reconstitution and have the potential to enhance immune responses using a fractional vaccine dose. To date, the majority of research has focused on vaccine delivery with little characterisation of local skin response and recovery. Here we study in detail the immediate local skin response and recovery of the skin post high density MAP application in 12 individuals receiving 3 MAPs randomly assigned to the forearm and upper arm. Responses were characterised by clinical scoring, dermatoscopy, evaporimetry and tissue viability imaging (TiVi). MAP application resulted in punctures in the epidermis, a significant transepidermal water loss (TEWL), the peak TEWL being concomitant with peak erythema responses visualised by TiVi. TEWL and TiVi responses reduced over time, with TEWL returning to baseline by 48 h and erythema fading over the course of a 7 day period. As MAPs for vaccination move into larger clinical studies more variation of individual subject phenotypic or disease propensity will be encountered which will require consideration both in regard to reliability of dose delivery and degree of inherent skin response.


Asunto(s)
Epidermis , Eritema , Parche Transdérmico/efectos adversos , Vacunación/efectos adversos , Vacunas , Adolescente , Adulto , Anciano , Epidermis/inmunología , Epidermis/patología , Eritema/etiología , Eritema/inmunología , Eritema/patología , Humanos , Masculino , Persona de Mediana Edad , Vacunas/administración & dosificación , Vacunas/inmunología
10.
NPJ Vaccines ; 5(1): 74, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802413

RESUMEN

We evaluated vaccination against Streptococcus pyogenes with the candidate vaccine, J8-DT, delivered by a high-density microarray patch (HD-MAP). We showed that vaccination with J8-DT eluted from a coated HD-MAP (J8-DT/HD-MAP), induced similar total IgG responses to that generated by vaccination with J8-DT adjuvanted with Alum (J8-DT/Alum). We evaluated the effect of dose reduction and the number of vaccinations on the antibody response profile of vaccinated mice. A reduction in the number of vaccinations (from three to two) with J8-DT/HD-MAP induced comparable antibody responses to three vaccinations with intramuscular J8-DT/Alum. Vaccine-induced protection against an S. pyogenes skin challenge was assessed. J8-DT/HD-MAP vaccination led to a significant reduction in the number of S. pyogenes colony forming units in skin (92.9%) and blood (100%) compared to intramuscular vaccination with unadjuvanted J8-DT. The protection profile was comparable to that of intramuscular J8-DT/Alum. J8-DT/HD-MAP induced a shift in the antibody isotype profile, with a bias towards Th1-related isotypes, compared to J8-DT/Alum (Th2 bias). Based on the results of this study, the use of J8-DT/HD-MAP should be considered in future clinical development and control programs against S. pyogenes. Furthermore, the innate characteristics of the technology, such as vaccine stability and increased coverage, ease of use, reduction of sharp waste and the potential reduction of dose may be advantageous compared to current vaccination methods.

11.
PLoS Med ; 17(3): e1003024, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32181756

RESUMEN

BACKGROUND: The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS: HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 µg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 µg/dose); or IM injection of H1N1 HA antigen (15 µg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 µg of HA to the FA or 15 µg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 µg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 µg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 µg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS: Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 µg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 µg HA injected IM. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550.


Asunto(s)
Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Vacunación , Administración Cutánea , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Australia , Células Cultivadas , Estabilidad de Medicamentos , Femenino , Humanos , Inmunoglobulina A/metabolismo , Vacunas contra la Influenza/efectos adversos , Gripe Humana/inmunología , Gripe Humana/virología , Inyecciones Intramusculares , Masculino , Saliva/inmunología , Saliva/virología , Linfocitos T/inmunología , Linfocitos T/virología , Factores de Tiempo , Parche Transdérmico , Resultado del Tratamiento , Vacunación/efectos adversos , Adulto Joven
12.
Vaccine X ; 2: 100030, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31384745

RESUMEN

The human papillomavirus (HPV) 9-valent, recombinant vaccine (Gardasil™9) helps protect young adults (males and females) against anogenital cancers and genital warts caused by certain HPV genotypes (ref. Gardasil™9 insert). This vaccine is administered intramuscularly (IM). The aim of this study was to determine preclinically whether intradermal (ID) vaccination with an unadjuvanted 9-valent recombinant HPV vaccine using a first-generation ID delivery device, the Nanopatch™, could enhance vaccine immunogenicity compared with the traditional ID route (Mantoux technique). IM injection of HPV VLPs formulated with Merck & Co., Inc., Kenilworth, NJ, USA Alum Adjuvant (MAA) were included in the rhesus study for comparison. The Nanopatch™ prototype contains a high-density array comprised of 10,000 microprojections/cm2, each 250 µm long. It was hypothesized the higher density array with shallower ID delivery may be superior to the Mantoux technique. To test this hypothesis, HPV VLPs without adjuvant were coated on the Nanopatch™, stability of the Nanopatch™ with unadjuvanted HPV VLPs were evaluated under accelerated conditions, skin delivery was verified using radiolabelled VLPs or FluoSpheres®, and the immune response and skin site reaction with the Nanopatch™ was evaluated in rhesus macaques. The immune response induced by Nanopatch™ administration, measured as HPV-specific binding antibodies, was similar to that induced using the Mantoux technique. It was also observed that a lower dose of unadjuvanted HPV VLPs delivered with the first-generation Nanopatch™ and applicator or Mantoux technique resulted in an immune response that was significantly lower compared to a higher-dose of alum adjuvanted HPV VLPs delivered IM in rhesus macaques. The study also indicated unadjuvanted HPV VLPs could be delivered with the first-generation Nanopatch™ and applicator to the skin in 15 s with a transfer efficiency of approximately 20%. This study is the first demonstration of patch administration in non-human primates with a vaccine composed of HPV VLPs.

13.
Vaccine ; 36(26): 3779-3788, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29779922

RESUMEN

BACKGROUND: Injection using needle and syringe (N&S) is the most widely used method for vaccination, but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch comprised of a high-density array of microprojections dry-coated with vaccine that is being developed to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that represents the first use in humans of the NP to deliver a vaccine. METHODS: Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg haemagglutinin (HA) per dose), applied to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3) Fluvax® 2016 containing 15 µg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured by haemagglutination inhibition (HAI) and microneutralisation (MN) assays. FINDINGS: NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most subjects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past experience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher HAI titres at day 7 and 21 compared with baseline (p < 0.0001), with no statistical differences between the treatment groups (p > 0.05), although the group sizes were small. The geometric mean HAI titres at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189-593 95% CI), 160 (74-345 95% CI), and 221 (129-380 95% CI) respectively. A similar pattern of responses was seen with the MN assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine NPs than with the placebo or IM injection. INTERPRETATION: Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in humans study, and induced similar immune responses to vaccination by IM injection.


Asunto(s)
Administración Cutánea , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Femenino , Voluntarios Sanos , Pruebas de Inhibición de Hemaglutinación , Humanos , Vacunas contra la Influenza/efectos adversos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Aceptación de la Atención de Salud , Placebos/administración & dosificación , Método Simple Ciego , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Adulto Joven
14.
J Pharm Sci ; 107(6): 1540-1551, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29421219

RESUMEN

The worldwide switch to inactivated polio vaccines (IPVs) is a key component of the overall strategy to achieve and maintain global polio eradication. To this end, new IPV vaccine delivery systems may enhance patient convenience and compliance. In this work, we examine Nanopatch™ (a solid, polymer microprojection array) which offers potential advantages over standard needle/syringe administration including intradermal delivery and reduced antigen doses. Using trivalent IPV (tIPV) and a purpose-built evaporative dry-down system, candidate tIPV formulations were developed to stabilize tIPV during the drying process and on storage. Identifying conditions to minimize tIPV potency losses during rehydration and potency testing was a critical first step. Various classes and types of pharmaceutical excipients (∼50 total) were then evaluated to mitigate potency losses (measured through D-antigen ELISAs for IPV1, IPV2, and IPV3) during drying and storage. Various concentrations and combinations of stabilizing additives were optimized in terms of tIPV potency retention, and 2 candidate tIPV formulations containing cyclodextrin and a reducing agent (e.g., glutathione), maintained ≥80% D-antigen potency during drying and subsequent storage for 4 weeks at 4°C, and ≥60% potency for 3 weeks at room temperature with the majority of losses occurring within the first day of storage.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Excipientes/química , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacunación/instrumentación , Desecación , Composición de Medicamentos , Humanos , Poliomielitis/inmunología , Poliomielitis/prevención & control , Poliovirus/inmunología , Vacuna Antipolio de Virus Inactivados/química , Vacuna Antipolio de Virus Inactivados/inmunología
15.
Vaccine ; 35(48 Pt B): 6676-6684, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29074201

RESUMEN

Most vaccinations are performed by intramuscular injection with a needle and syringe. However, this method is not ideal due to limitations, such as the risk of needle-stick injury, the requirement for trained personnel to give injections and the need to reconstitute lyophilized vaccines. Therefore, we tested an alternative delivery technology that overcomes the problems with needle and syringe. The Nanopatch™ is an array of 10,000 silicon micro-projections per cm2 that can be dry-coated with vaccine for skin delivery. The high number and density of micro-projections means that high velocity application is required to achieve consistent skin penetration. Before clinically testing a vaccine Nanopatch, this study tests the safety, tolerability and acceptability/utility of uncoated and excipient-coated Nanopatches in healthy adults. Nanopatches were applied to skin of the upper arm and volar forearm and left in contact with the skin for two minutes before removal. The application sites were assessed for local skin response over 28 days. Acceptability interviews were also performed. No unexpected adverse events directly related to the Nanopatch application were reported. All applications of the Nanopatch resulted in an expected erythema response which faded between days 3 and 7. In some subjects, some skin discolouration was visible for several days or up to 3 weeks after application. The majority (83%) of subjects reported a preference for the Nanopatch compared to the needle and syringe and found the application process to be simple and acceptable. On a pain scale from 0 to 10, 78% of applications were scored "0" (no pain) with the average scores for less than 1. The results from this study demonstrate the feasibility of the Nanopatch to improve vaccination by showing that application of the product without vaccine to human skin is safe, tolerable and preferred to needle and syringe administration. Clinical trial registry ID: ACTRN1261500083549.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Excipientes/química , Nanoestructuras/efectos adversos , Nanoestructuras/química , Silicio/química , Adulto , Sistemas de Liberación de Medicamentos/efectos adversos , Excipientes/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nanoestructuras/administración & dosificación , Sujetos de Investigación , Silicio/administración & dosificación , Silicio/efectos adversos , Piel/efectos de los fármacos , Vacunas/administración & dosificación , Adulto Joven
16.
Sci Rep ; 7(1): 12644, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974777

RESUMEN

To secure a polio-free world, the live attenuated oral poliovirus vaccine (OPV) will eventually need to be replaced with inactivated poliovirus vaccines (IPV). However, current IPV delivery is less suitable for campaign use than OPV, and more expensive. We are progressing a microarray patch delivery platform, the Nanopatch, as an easy-to-use device to administer vaccines, including IPV. The Nanopatch contains an ultra-high density array (10,000/cm2) of short (~230 µm) microprojections that delivers dry coated vaccine into the skin. Here, we compare the relative immunogenicity of Nanopatch immunisation versus intramuscular injection in rats, using monovalent and trivalent formulations of IPV. Nanopatch delivery elicits faster antibody response kinetics, with high titres of neutralising antibody after just one (IPV2) or two (IPV1 and IPV3) immunisations, while IM injection requires two (IPV2) or three (IPV1 and IPV3) immunisations to induce similar responses. Seroconversion to each poliovirus type was seen in 100% of rats that received ~1/40th of a human dose of IPV delivered by Nanopatch, but not in rats given ~1/8th or ~1/40th dose by IM injection. Ease of administration coupled with dose reduction observed in this study suggests the Nanopatch could facilitate inexpensive IPV vaccination in campaign settings.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados/inmunología , Animales , Anticuerpos Antivirales/inmunología , Humanos , Poliomielitis/inmunología , Poliomielitis/virología , Poliovirus/inmunología , Poliovirus/patogenicidad , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio Oral/administración & dosificación , Ratas , Piel/efectos de los fármacos , Piel/inmunología , Vacunación
17.
Drug Dev Ind Pharm ; 34(1): 95-106, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18214761

RESUMEN

AIM: Carbamazepine and dipyridamole are class II compounds (BCS) whose oral bioavailability is limited by poor solubility. The use of glass solutions to improve the bioavailability of this class of compound has been an area of research for a number of years. The influence of polymer parameters (Tg, hydrophilicity, solubility parameter, and ability to hydrogen bond) on glass solution properties is investigated. METHODS: Carbamazepine and dipyridamole glass solutions are prepared with PVP/VA 64 and PVP/VA 37 by spray drying and melt extrusion. The products are then characterized by XRPD, thermal, and spectroscopic methods. Yield, physical stability, and dissolution profiles are also assessed. RESULTS: The properties of the polymer greatly influenced the ability to produce glass solutions. With decreases in Tg and hydrophilicity, melt extrusion became the more viable of the two preparative techniques. Although glass solutions were successfully prepared, the greater the difference in component solubility parameter, the less physically stable the formulation. CONCLUSION: Consideration must be given to the characteristics of the polymer when selecting for glass solution formulation. Although a number of process parameters can be varied for melt extrusion and spray drying, their ability to overcome fundamental differences in the physical parameters discussed is limited.


Asunto(s)
Carbamazepina/química , Dipiridamol/química , Pirrolidinas/química , Compuestos de Vinilo/química , Carbamazepina/administración & dosificación , Dipiridamol/administración & dosificación , Estabilidad de Medicamentos , Solubilidad , Tecnología Farmacéutica
18.
Med Device Technol ; 19(7): 42-4, 46-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19133628

RESUMEN

Part 1 of this article demonstrated that knowledge of coating science is important in the formulation and early development of a functionally active coating for a medical device/combination product. Part II focuses on the testing challenges and verification of the finished coating on the product.


Asunto(s)
Materiales Biocompatibles Revestidos/análisis , Materiales Biocompatibles Revestidos/química , Ensayo de Materiales/instrumentación , Ensayo de Materiales/métodos
19.
Int J Pharm ; 336(1): 22-34, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17174493

RESUMEN

The aim of this study was to investigate the influence of the manufacturing process on the physicochemical properties of three poorly water soluble compounds (carbamazepine, dipyridamole, and indomethacin) when processed with a polymer (polyvinylpyrrolidone K30 (PVP)) at a 1:2 drug to polymer ratio. Melt extrusion, spray drying, and ball milling techniques were used to prepare glass solutions. Product homogeneity, dissolution, physical stability, and drug/polymer interactions were investigated. Particular attention was paid to solid phase analysis using XRPD, modulated temperature DSC, optical microscopy, and Raman microscopy and the importance of using a combination of techniques was demonstrated. The latter technique when applied to freshly ball milled samples exhibited the presence of drug and polymer rich areas, indicating that complete glass solution formation had not occurred. The three compounds produced products with differing physical stability with indomethacin proving the most physically stable. These differences in physical stability were attributed to hydrogen bonding of drug and polymer. The manufacturing technique did not influence physical stability, but it did affect dissolution. The dissolution of the spray-dried material was generally poor, compared to melt extruded and ball milled products. This was probably due to rapid dissolution of PVP from the small particles of the spray-dried products.


Asunto(s)
Carbamazepina/química , Química Farmacéutica/métodos , Dipiridamol/química , Indometacina/química , Povidona/química , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Estabilidad de Medicamentos , Enlace de Hidrógeno , Microscopía Electrónica de Rastreo , Microscopía de Polarización , Tamaño de la Partícula , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Termogravimetría , Temperatura de Transición , Agua/química , Difracción de Rayos X
20.
Magn Reson Chem ; 43(11): 881-92, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16059964

RESUMEN

We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements.


Asunto(s)
Indometacina/química , Espectroscopía de Resonancia Magnética/métodos , Nifedipino/química , Temperatura , Isótopos de Carbono , Espectroscopía de Resonancia Magnética/normas , Estructura Molecular , Protones , Estándares de Referencia , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...