Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 259: 115006, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182303

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a large group of persistent industrial chemicals that can harm reproductive health. PFAS levels were analysed to determine the current sources of exposure and possible associations between prenatal PFAS exposure and adverse pregnancy outcome. Samples from 136 mother-newborn pairs recruited between 2017 and 2019 were analysed for the presence of 31 target PFAS in maternal serum, umbilical cord serum, and placental tissue by high-performance liquid chromatography coupled to a tandem mass spectrometer. Questionnaires and medical records were used to survey sources of exposure and pregnancy outcome, including small for gestational age (SGA), fetal growth restriction (FGR), preeclampsia (PE), preterm birth, large for gestational age (LGA) and gestational diabetes mellitus (GDM). Data were analysed for individual PFAS and sum4PFAS (sum of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) serum levels) in logistic regression analyses and categorical regression analyses. Compared to data from a previous Viennese study in 2010-12, sum4PFAS levels were generally lower. Sum4PFAS serum levels of three women (2.2%) exceeded 6.9 µg/L, a level that corresponds to the recently established tolerable weekly intake (TWI) of EFSA for nursing mothers aged 35 years; in the 2010/2012 study it was 13.6%. The large contribution of unidentified extractable organofluorine (EOF) fractions to total PFAS exposure is a concern. Study site, mean maternal corpuscular hemoglobin (MCH), use of facial lotion, and owning upholstered furniture were significantly influencing maternal exposure. While no effect of sum4PFAS on pregnancy outcome could be detected, we found highest placental PFDA levels in SGA births. PFHxS levels in umbilical cord and placenta were highest in preterm births. Further studies are needed to elucidate the relationship of prenatal PFAS exposure and pregnancy outcome, in particular to confirm whether and how placental PFDA levels may contribute to an increased risk for SGA.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Nacimiento Prematuro , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Femenino , Recién Nacido , Resultado del Embarazo/epidemiología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Placenta , Austria , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/inducido químicamente , Ácidos Alcanesulfónicos/toxicidad , Alcanosulfonatos
2.
Toxics ; 10(11)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36422892

RESUMEN

Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.

3.
J Toxicol Environ Health B Crit Rev ; 25(1): 23-42, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34930098

RESUMEN

Per- and polyfluorinated substances (PFAS), ubiquitously present in the environment and biota, are transferred to the fetus via the placenta. PFAS can be distinguished, among other things, by their different carbon chain lengths and functional groups. The aim of this study was to provide comprehensive evidence on PFAS transfer rates across the human placental barrier by means of a meta-analysis based upon a systematic review. The available literature up to April 2021 was reviewed and transplacental transfer efficiencies (TTEs) of PFAS assessed. A total of 39 studies reporting data on 20 PFAS were included in the systematic review. Of these, 20 studies with data on 19 compounds were included in the meta-analysis. Comprehensive Meta-Analysis (CMA v3.0) was used for quantitative, statistical analyses with random effects models. A curvilinear relationship was found with short and long chains of perfluorocarboxylic acids (PFCAs) exhibiting higher TTE than compounds with intermediate chain length. Among the less well studied PFAS, perfluorohexanoic acid (PFHxA), 6:2 fluorotelomersulfonic acid (6:2 FTS) and perfluorobutanoic acid (PFBA) stood out the most with a high TEEs. The dependence of TTEs on chain length and functional group is clearly shown in this first meta-analysis on PFAS transfer across the human placenta. More data on effects of less well studied PFAS in pregnant women and neonates are needed to assess the potential risk for fetal exposure.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Fluorocarburos/metabolismo , Placenta/metabolismo , Caproatos/metabolismo , Contaminantes Ambientales/efectos adversos , Contaminantes Ambientales/química , Femenino , Fluorocarburos/química , Humanos , Recién Nacido , Embarazo , Efectos Tardíos de la Exposición Prenatal
4.
Environ Pollut ; 293: 118543, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800587

RESUMEN

Perfluorooctane sulfonic acid (PFOS) is a ubiquitous environmental pollutant. In humans, PFOS exposure has been associated with a number of adverse health outcomes, including reduced birth weight. Whether PFOS is capable of affecting angiogenesis and thus possibly fetal development is unknown. Therefore, we investigated 1) the metabolic activity of PFOS-exposed endothelial cells (human umbilical vein endothelial cells, HUVECs), fibroblasts (normal colon fibroblasts, NCFs), and epithelial cells (human colorectal carcinoma cells, HCT116), 2) PFOS-specific inhibition of vascular endothelial growth factor receptor (VEGFR)2 stimulation in KDR/NFAT-RE HEK293 cells, and 3) the antiangiogenic potential of PFOS in a 3D in vitro angiogenesis model of HUVECs and NCFs. In terms of metabolic activity, endothelial cells (HUVECs) were much more sensitive to PFOS than fibroblasts (NCFs) or epithelial cells (HCT116). VEGFR2 signaling in KDR/NFAT-RE HEK293 cells decreased with increasing PFOS concentrations. In co-culture (angiogenesis assay), PFOS treatment resulted in a dose-dependent reduction in tip and branch formation, tip length (µm), and total structural area (µm2) with stable metabolic activity of HUVECs up to high concentrations. We conclude that PFOS possesses antiangiogenic properties. Inhibition of VEGFR2 signaling indicates a possible mechanism of action that can be linked to an existing Adverse Outcome Pathway (AOP43) containing the AO reduced birth weight. Further studies are needed to confirm PFOS-specific adverse effects on angiogenesis, placental perfusion, and fetal growth.


Asunto(s)
Placenta , Factor A de Crecimiento Endotelial Vascular , Ácidos Alcanesulfónicos , Proliferación Celular , Técnicas de Cocultivo , Femenino , Fluorocarburos , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Embarazo
5.
Int J Hyg Environ Health ; 238: 113855, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34655857

RESUMEN

Lead (Pb) is a ubiquitous environmental pollutant and a potent toxic compound. Humans are exposed to Pb through inhalation, ingestion, and skin contact via food, water, tobacco smoke, air, dust, and soil. Pb accumulates in bones, brain, liver and kidney. Fetal exposure occurs via transplacental transmission. The most critical health effects are developmental neurotoxicity in infants and cardiovascular effects and nephrotoxicity in adults. Pb exposure has been steadily decreasing over the past decades, but there are few recent exposure data from the general European population; moreover, no safe Pb limit has been set. Sensitive biomarkers of exposure, effect and susceptibility, that reliably and timely indicate Pb-associated toxicity are required to assess human exposure-health relationships in a situation of low to moderate exposure. Therefore, a systematic literature review based on PubMed entries published before July 2019 that addressed Pb exposure and biomarkers of effect and susceptibility, neurodevelopmental toxicity, epigenetic modifications, and transcriptomics was conducted. Finally included were 58 original papers on Pb exposure and 17 studies on biomarkers. The biomarkers that are linked to Pb exposure and neurodevelopment were grouped into effect biomarkers (serum brain-derived neurotrophic factor (BDNF) and serum/saliva cortisol), susceptibility markers (epigenetic markers and gene sequence variants) and other biomarkers (serum high-density lipoprotein (HDL), maternal iron (Fe) and calcium (Ca) status). Serum BDNF and plasma HDL are potential candidates to be further validated as effect markers for routine use in HBM studies of Pb, complemented by markers of Fe and Ca status to also address nutritional interactions related to neurodevelopmental disorders. For several markers, a causal relationship with Pb-induced neurodevelopmental toxicity is likely. Results on BDNF are discussed in relation to Adverse Outcome Pathway (AOP) 13 ("Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities") of the AOP-Wiki. Further studies are needed to validate sensitive, reliable, and timely effect biomarkers, especially for low to moderate Pb exposure scenarios.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Plomo , Adulto , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/genética , Humanos , Lactante , Plomo/toxicidad , Aprendizaje , Saliva
6.
Environ Sci Technol ; 55(13): 9033-9042, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34133125

RESUMEN

Embryos and fetuses are of major concern due to their high vulnerability. Previous studies demonstrated that human exposure to per- and polyfluoroalkyl substances (PFAS) may be underestimated because only a limited number of known PFAS can be measured. This investigation studied the total PFAS exposure by measuring the extractable organofluorine (EOF) in pooled maternal serum, placental tissue, and cord serum samples (total number of pooled samples: n = 45). The EOF was analyzed using combustion ion chromatography, and the concentrations of known PFAS were determined using ultraperformance liquid chromatography coupled with a tandem mass spectrometer. Using a mass balance analysis approach, the amount of unknown PFAS was estimated between the levels of known PFAS and EOF. The EOF levels ranged from 2.85 to 7.17 ng F/mL (21 PFAS were quantified) in the maternal serum, from 1.02 to 1.85 ng F/g (23 PFAS were quantified) in the placental tissue, and from 1.2 to 2.10 ng F/mL (18 PFAS were quantified) in the cord serum. An average of 24, 51, and 9% of EOF is unidentified in the maternal serum, placental tissue, and cord serum, respectively. The results show that the levels of unidentified EOF are higher in the placental tissue, suggesting accumulation or potential transformation of precursors in the placenta.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Austria , Cromatografía Liquida , Femenino , Fluorocarburos/análisis , Humanos , Placenta/química , Embarazo , Suero
7.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567754

RESUMEN

The placental barrier can protect the fetus from contact with harmful substances. The potent neurotoxin methylmercury (MeHg), however, is very efficiently transported across the placenta. Our previous data suggested that L-type amino acid transporter (LAT)1 is involved in placental MeHg uptake, accepting MeHg-L-cysteine conjugates as substrate due to structural similarity to methionine. The aim of the present study was to investigate the antioxidant defense of placental cells to MeHg exposure and the role of LAT1 in this response. When trophoblast-derived HTR-8/SVneo cells were LAT1 depleted by siRNA-mediated knockdown, they accumulated less MeHg. However, they were more susceptible to MeHg-induced toxicity. This was evidenced in decreased cell viability at a usually noncytotoxic concentration of 0.03 µM MeHg (~6 µg/L). Treatment with ≥0.3 µM MeHg increased cytotoxicity, apoptosis rate, and oxidative stress of HTR-8/SVneo cells. These effects were enhanced under LAT1 knockdown. Reduced cell number was seen when MeHg-exposed cells were cultured in medium low in cysteine, a constituent of the tripeptide glutathione (GSH). Because LAT1-deficient HTR-8/SVneo cells have lower GSH levels than control cells (independent of MeHg treatment), we conclude that LAT1 is essential for de novo synthesis of GSH, required to counteract oxidative stress. Genetic predisposition to decreased LAT1 function combined with MeHg exposure could increase the risk of placental damage.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/farmacología , Estrés Oxidativo/efectos de los fármacos , Placenta/efectos de los fármacos , Sustancias Protectoras/farmacología , Apoptosis , Supervivencia Celular , Células Cultivadas , Femenino , Glutatión/metabolismo , Humanos , Placenta/metabolismo , Placenta/patología , Embarazo , Sustancias Protectoras/análisis
8.
Anal Bioanal Chem ; 413(3): 865-876, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33215313

RESUMEN

Since the detection of per- and polyfluoroalkyl substances (PFAS) in humans and different environmental media in the last two decades, this substance group has attracted a lot of attention as well as increasing concerns. The fluorine mass balance approach, by comparing the levels of targeted PFAS after conversion to fluorine equivalents with those of extractable organic fluorine (EOF), showed the presence of unidentified organofluorine in different environmental samples. Out of the thousands of PFAS in existence, only a very small fraction is included in routine analysis. In recent years, liquid chromatography coupled with tandem-mass spectrometry (LC-MS/MS) has demonstrated the ability to analytically cover a wide spectrum of PFAS. In contrast, conventional extraction methods developed 10 to 15 years ago were only evaluated for a limited number of PFAS. The aim of the present study was to evaluate the advantages and disadvantages of three different extraction methods, adapted from the literatures without further optimization (ion-pair liquid-liquid extraction, solid-phase extraction (SPE), using hydrophilic-lipophilic (HLB) or weak anion exchange (WAX) sorbents), for human biomonitoring of 61 PFAS in serum and placental tissue samples. In addition, levels of EOF were compared among these extraction methods via spiked samples. Results showed that performance, in terms of recovery, differed between the extraction methods for different PFAS; different extraction methods resulted in different EOF concentrations indicating that the choice of extraction method is important for target PFAS and EOF analysis. Results of maternal serum samples, analyzed in two different laboratories using two different extraction methods, showed an accordance of 107.6% (± 21.3); the detected perfluoroalkyl acids (PFAAs) in maternal and cord serum samples were in the range of 0.076 to 2.9 ng/mL.Graphical abstract.


Asunto(s)
Flúor/aislamiento & purificación , Fluorocarburos/aislamiento & purificación , Placenta/metabolismo , Adolescente , Adulto , Femenino , Fluorocarburos/sangre , Fluorocarburos/metabolismo , Humanos , Extracción Líquido-Líquido/métodos , Persona de Mediana Edad , Embarazo , Estándares de Referencia , Extracción en Fase Sólida/métodos , Adulto Joven
9.
Metallomics ; 12(11): 1822-1833, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146651

RESUMEN

Cadmium (Cd) is a global pollutant that accumulates in the placenta and can cause placental dysfunction. Although iron transporters have been suggested to participate in placental Cd uptake, it is still unknown which transporters are actually involved in this process. We specifically aimed to study the role of three iron transporters in the uptake of Cd into the placental cell line HTR-8/SVneo. For this purpose, Divalent Metal Transporter (DMT)1 and ZRT/IRT like protein (ZIP)8 and ZIP14 were downregulated and changes in cellular Cd levels analysed in relation to controls. As clearly shown by the reduction of the Cd content by ∼60% in DMT1- and ZIP14-downregulated cells, the two proteins are essential for Cd accumulation in HTR-8/SVneo cells. Using a validated antibody, we show DMT1 to be localised in situ in trophoblast and stromal cells. We further wanted to investigate how placental cells cope with Cd loading and which metallothionein (MT) isoforms they express. Cd-exposed cells accumulate Cd in a dose-dependent manner and upregulate MT2A accordingly (up to 15-fold induction upon 5 µM CdCl2 treatment for 72 h). 5 µM Cd exposure for 72 h decreased cell number to 60%, an effect that was aggravated by MT2A depletion (cell number reduced to 30%) indicating additive effects. In conclusion, our data suggest that DMT1 and ZIP14 are required for Cd uptake into human placental cells that upregulate MT2A to store and detoxify the metal. Cd storage in the placenta reduces Cd transport to the fetus, which, however, could impair placental functions and fetal development.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Placenta/citología , Transporte Biológico/efectos de los fármacos , Cadmio/toxicidad , Recuento de Células , Línea Celular , Femenino , Humanos , Metalotioneína/metabolismo , Modelos Biológicos , Embarazo
10.
Environ Int ; 137: 105324, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32109724

RESUMEN

Perfluoroalkyl (PFAS) substances are widespread in the environment and in organisms. The fact that exposure to PFAS is associated with elevated cholesterol levels is a major concern for human health. Previous investigations, in which bovine serum albumin was frequently studied, indicate that PFOS, PFOA and PFNA bind to serum albumin. However, it is critical to know whether these and other PFAS have a preference for the protein or the lipid fraction in native human blood fractions. For this reason, blood samples from four young healthy volunteers (two women, two men, 23-31 years old) were used for protein size separation and fractionation by the Cohn method in combination with serial ultracentrifugation. The plasma fractions were analyzed for 11 PFAS using high-performance tandem mass spectrometry (HPLC-MS/MS). Although the data are based on a small sample, they clearly show that albumin is the most important carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in native human plasma. These five compounds have very little or no affinity for lipoproteins. The confirmation of their transport through albumin is important for the epidemiology of PFAS. The present results must be verified by the examination of a larger number of persons.


Asunto(s)
Albúminas , Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Adulto , Albúminas/fisiología , Contaminantes Ambientales/farmacocinética , Femenino , Fluorocarburos/farmacocinética , Humanos , Lípidos , Lipoproteínas , Masculino , Espectrometría de Masas en Tándem , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...