RESUMEN
Characterizing microorganisms according to different criteria is useful when investigating sources of microbiological contamination in the pharmaceutical industry. The aim of this study was to characterize 38 Acinetobacter baumannii complex strains isolated from a biopharmaceutical industry by 16S rRNA sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), multilocus sequence typing (MLST), antimicrobial susceptibility profile, biofilm formation, and sensibility to disinfectants. Thirty-three (86.9%) strains were identified by 16S rRNA gene sequencing as A. seifertii/pitti/nosocomialis/lactucae, four (10.5%) as A. baumannii, and one (2.6%) as A. vivianii/courvalini. MALDI-TOF/MS did not identify one strain, and incorrectly identified 30/37 (81.1%) strains as A. baumannii. Strains were assigned to 12 different STs, of which nine were newly defined in this study (STs 2091-2099). Twenty-six (68.4%) strains showed resistance to amikacin and gentamicin. Thirty-three (86.8%) strains were classified as moderately or strongly adherent on polystyrene. Alcohol 70%/15 min and quaternary ammonium 0.08%/20 min were not able to eliminate the biofilm formed, but sodium hypochlorite 0.1%/15 min was efficient. In conclusion, improved methods are needed to improve the identification of Acinetobacter strains in pharmaceutical industries. This organism is of particular concern as it forms recalcitrant biofilms, leading to persistence in the manufacturing environment and increased risk of product contamination.
Asunto(s)
Acinetobacter baumannii , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Acinetobacter baumannii/genética , Amicacina , Preparaciones FarmacéuticasRESUMEN
In 2010, two infants became ill at a hospital in Mexico. Subsequently, a range of clinical, environmental, and powdered and rehydrated infant formula isolates were identified by using a combination of phenotyping and PCR probes. The strains were clustered according to pulsed-field gel electrophoresis. The causative agent was reported as Cronobacter sakazakii, with powdered infant formula (PIF) identified as the likely source of the infections. This new study further characterized the isolates from this outbreak by using multilocus sequence typing and whole genome sequencing of selected strains. Though four PIF isolates and one hospital environmental isolate were identified as C. sakazakii sequence type 297 by multilocus sequence typing, they were isolated 6 months prior to the outbreak. Genotypic analyses of patient isolates identified them as Enterobacter hormaechei and Enterobacter spp. The pulsed-field gel electrophoresis profile of the Enterobacter spp. isolates matched those of isolates from previously unopened tins of PIF. E. hormaechei was only isolated from the two infants and not PIF. The reevaluation of this outbreak highlights the need for accurate detection and identification assays, particularly during outbreak investigations in which incorrect identifications may mislead the investigation and attribution of the source. Though the species responsible for the symptoms could not be determined, this outbreak demonstrated the possible transmission of Enterobacter spp. from PIF to infants. These are possibly the first reported cases of Enterobacter spp. infection of infants from bacterial-contaminated PIF.