Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1418951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011477

RESUMEN

Introduction: Diffuse pleural mesothelioma (DPM) of the pleura is a highly aggressive and treatment-resistant cancer linked to asbestos exposure. Despite multimodal treatment, the prognosis for DPM patients remains very poor, with an average survival of 2 years from diagnosis. Cisplatin, a platinum-based chemotherapy drug, is commonly used in the treatment of DPM. However, the development of resistance to cisplatin significantly limits its effectiveness, highlighting the urgent need for alternative therapeutic strategies. New selective inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have shown promise in various malignancies by inhibiting cell cycle progression and suppressing tumor growth. Recent studies have indicated the potential of abemaciclib for DPM therapy, and a phase II clinical trial has shown preliminary encouraging results. Methods: Here, we tested abemaciclib, palbociclib, and ribociclib on a panel of DPM cell lines and non-tumor mesothelial(MET-5A) cells. Results: Specifically, we focused on abemaciclib, which was the mosteffective cytotoxic agent on all the DPM cell lines tested. Abemaciclib reduced DPM cell viability, clonogenic potential, and ability to grow as three-dimensional (3D) spheroids. In addition, abemaciclib induced prolonged effects, thereby impairing second-generation sphere formation and inducing G0/G1 arrest and apoptosis/ necrosis. Interestingly, single silencing of RB family members did not impair cell response to abemaciclib, suggesting that they likely complement each other in triggering abemaciclib's cytostatic effect. Interestingly, abemaciclib reduced the phosphorylation of AKT, which is hyperactive in DPM and synergized with the pharmacological AKT inhibitor (AKTi VIII). Abemaciclib also synergized with cisplatin and reduced the viability of DPM cells with acquired resistance to cisplatin. Discussion: Overall, our results suggest that CDK4/6 inhibitors alone or in combination with standard of care should be further explored for DPM therapy.

2.
Oncogene ; 43(17): 1263-1273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38433256

RESUMEN

DNA double-strand breaks (DSBs) contribute to genome instability, a key feature of cancer. DSBs are mainly repaired by homologous recombination (HR) and non-homologous end-joining (NHEJ). We investigated the role of an isoform of the multifunctional cyclin-dependent kinase 9, CDK9-55, in DNA repair, by generating CDK9-55-knockout HeLa clones (through CRISPR-Cas9), which showed potential HR dysfunction. A phosphoproteomic screening in these clones treated with camptothecin revealed that CDC23 (cell division cycle 23), a component of the E3-ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome), is a new substrate of CDK9-55, with S588 being its putative phosphorylation site. Mutated non-phosphorylatable CDC23(S588A) affected the repair pathway choice by impairing HR and favouring error-prone NHEJ. This CDK9 role should be considered when designing CDK-inhibitor-based cancer therapies.

3.
Front Oncol ; 13: 1117262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409248

RESUMEN

Introduction: DNA double-strand breaks are the most toxic lesions repaired through the non-homologous and joining (NHEJ) or the homologous recombination (HR), which is dependent on the generation of single-strand tails, by the DNA end resection mechanism. The resolution of the HR intermediates leads to error-free repair (Gene Conversion) or the mutagenic pathways (Single Strand Annealing and Alternative End-Joining); the regulation of processes leading to the resolution of the HR intermediates is not fully understood. Methods: Here, we used a hydrophilic extract of a new tomato genotype (named DHO) in order to modulate the Camptothecin (CPT) DNA damage response. Results: We demonstrated increased phosphorylation of Replication Protein A 32 Serine 4/8 (RPA32 S4/8) protein in HeLa cells treated with the CPT in combination with DHO extract with respect to CPT alone. Moreover, we pointed out a change in HR intermediates resolution from Gene Conversion to Single Strand Annealing through the modified DNA repair protein RAD52 homolog (RAD52), DNA excision repair protein ERCC-1 (ERCC1) chromatin loading in response to DHO extract, and CPT co-treatment, with respect to the vehicle. Finally, we showed an increased sensitivity of HeLa cell lines to DHO extract and CPT co-treatment suggesting a possible mechanism for increasing the efficiency of cancer therapy. Discussion: We described the potential role of DHO extract in the modulation of DNA repair, in response to Camptothecin treatment (CPT), favoring an increased sensitivity of HeLa cell lines to topoisomerase inhibitor therapy.

4.
Viruses ; 13(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34960727

RESUMEN

Malignant mesothelioma (MM) is an aggressive asbestos-related cancer, against which no curative modalities exist. Oncolytic virotherapy is a promising therapeutic approach, for which MM is an ideal candidate; indeed, the pleural location provides direct access for the intra-tumoral injection of oncolytic viruses (OVs). Some non-human OVs offer advantages over human OVs, including the non-pathogenicity in humans and the absence of pre-existing immunity. We previously showed that caprine herpesvirus 1 (CpHV-1), a non-pathogenic virus for humans, can kill different human cancer cell lines. Here, we assessed CpHV-1 effects on MM (NCI-H28, MSTO, NCI-H2052) and non-tumor mesothelial (MET-5A) cells. We found that CpHV-1 reduced cell viability and clonogenic potential in all MM cell lines without affecting non-tumor cells, in which, indeed, we did not detect intracellular viral DNA after treatment. In particular, CpHV-1 induced MM cell apoptosis and accumulation in G0/G1 or S cell cycle phases. Moreover, CpHV-1 strongly synergized with cisplatin, the drug currently used in MM chemotherapy, and this agent combination did not affect normal mesothelial cells. Although further studies are required to elucidate the mechanisms underlying the selective CpHV-1 action on MM cells, our data suggest that the CpHV-1-cisplatin combination could be a feasible strategy against MM.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Mesotelioma Maligno/terapia , Viroterapia Oncolítica , Virus Oncolíticos/fisiología , Varicellovirus/fisiología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Humanos , Mesotelioma Maligno/tratamiento farmacológico , Mesotelioma Maligno/fisiopatología , Mesotelioma Maligno/virología , Virus Oncolíticos/genética , Varicellovirus/genética
5.
Biomed Pharmacother ; 134: 111139, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33360155

RESUMEN

Breast and ovarian cancers are the leading and fifth reason for tumor death among females, respectively. Recently, many studies demonstrated antiproliferative activities of natural aliments in cancer. In this study, we investigated the antitumor potential of Olive Leaf Extract (OLE) in triple-negative breast and ovarian cancer cells. A HPLC/DAD analysis on OLE has been performed to assess the total polyphenolics and other secondary metabolites content. HCEpiC, MDA-MB-231, and OVCAR-3 cell lines were used. MTS, Cytofluorimetric, Western Blot analysis were performed to analyze cell viability, cell proliferation, apoptosis, and oxidative stress. Fluorimetric and IncuCyte® analyses were carried out to evaluate apoptosis and mitochondrial function. We confirmed that OLE, containing a quantity of oleuropein of 87 % of the total extract, shows anti-proliferative and pro-apoptotic activity on MDA-MB-231 cells. For the first time, our results indicate that OLE inhibits OVCAR-3 cell viability inducing cell cycle arrest, and it also increases apoptotic cell death up-regulating the protein level of cleaved-PARP and caspase 9. Moreover, our data show that OLE treatment causes a significant decrease in mitochondrial functionality, paralleled by a reduction of mitochondrial membrane potential. Interestingly, OLE increased the level of intracellular and mitochondrial reactive oxygen species (ROS) together with a decreased activity of ROS scavenging enzymes, confirming oxidative stress in both models. Our data demonstrate that mitochondrial ROS generation represented the primary mechanism of OLE antitumor activity, as pretreatment with antioxidant N-acetylcysteine prevented OLE-induced cell cycle arrest and apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Mitocondrias/efectos de los fármacos , Olea , Neoplasias Ováricas/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Olea/química , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Transducción de Señal , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
6.
Int J Mol Sci ; 21(19)2020 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020398

RESUMEN

Malignant mesothelioma (MM) is a very aggressive asbestos-related cancer, for which no therapy proves to be effective. We have recently shown that the oncolytic adenovirus dl922-947 had antitumor effects in MM cell lines and murine xenografts. Previous studies demonstrated that dl922-947-induced host cell cycle checkpoint deregulation and consequent DNA lesions associated with the virus efficacy. However, the cellular DNA damage response (DDR) can counteract this virus action. Therefore, we assessed whether AZD1775, an inhibitor of the G2/M DNA damage checkpoint kinase WEE1, could enhance MM cell sensitivity to dl922-947. Through cell viability assays, we found that AZD1775 synergized with dl922-947 selectively in MM cell lines and increased dl922-947-induced cell death, which showed hallmarks of apoptosis (annexinV-positivity, caspase-dependency, BCL-XL decrease, chromatin condensation). Predictably, dl922-947 and/or AZD1775 activated the DDR, as indicated by increased levels of three main DDR players: phosphorylated histone H2AX (γ-H2AX), phospho-replication protein A (RPA)32, phospho-checkpoint kinase 1 (CHK1). Dl922-947 also increased inactive Tyr-15-phosphorylated cyclin-dependent kinase 1 (CDK1), a key WEE1 substrate, which is indicative of G2/M checkpoint activation. This increase in phospho-CDK1 was effectively suppressed by AZD1775, thus suggesting that this compound could, indeed, abrogate the dl922-947-induced DNA damage checkpoint in MM cells. Overall, our data suggest that the dl922-947-AZD1775 combination could be a feasible strategy against MM.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Mesotelioma Maligno/tratamiento farmacológico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinonas/farmacología , Adenoviridae/genética , Apoptosis/efectos de los fármacos , Amianto/toxicidad , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/farmacología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Humanos , Mesotelioma Maligno/inducido químicamente , Mesotelioma Maligno/genética , Mesotelioma Maligno/virología , Viroterapia Oncolítica , Virus Oncolíticos/genética , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas/genética
7.
Cell Death Dis ; 11(10): 867, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067416

RESUMEN

Author Francesca Pentimalli was incorrectly associated with Histopathological Unit, IRCCS-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy. The author's actual affiliation is Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Napoli, Italy.

8.
Cell Death Dis ; 11(9): 748, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929059

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive cancer, related to asbestos exposure, which has a dismal prognosis. MPM diagnosis is late and often challenging, suggesting the need to identify more reliable molecular biomarkers. Here, we set out to identify differentially expressed miRNAs in epithelioid, biphasic, and sarcomatoid MPMs versus normal mesothelium and explored specific miRNA contribution to mesothelial tumorigenesis. We screened an LNA™-based miRNA-microrray with 14 formalin-fixed paraffin-embedded (FFPE) MPMs and 6 normal controls. Through real-time qRT-PCR we extended the analysis of a miRNA subset and further investigated miR-320a role through state-of-the-art techniques. We identified 16 upregulated and 32 downregulated miRNAs in MPMs versus normal tissue, including the previously identified potential biomarkers miR-21, miR-126, miR-143, miR-145. We showed in an extended series that miR-145, miR-10b, and miR-320a levels can discriminate tumor versus controls with high specificity and sensitivity. We focused on miR-320a because other family members were found downregulated in MPMs. However, stable miR-320a ectopic expression induced higher proliferation and migration ability, whereas miR-320a silencing reduced these processes, not supporting a classic tumor-suppressor role in MPM cell lines. Among putative targets, we found that miR-320a binds the 3'-UTR of the immune inhibitory receptor ligand PDL1 and, consistently, miR-320a modulation affects PDL1 levels in MPM cells. Finally, we showed that p53 over-expression induces the upregulation of miR-320a, along with miR-200a and miR-34a, both known to target PDL1, and reduces PDL1 levels in MPM cells. Our data suggest that PDL1 expression might be due to a defective p53-regulated miRNA response, which could contribute to MPM immune evasion or tumorigenesis through tumor-intrinsic roles.


Asunto(s)
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Mesotelioma Maligno/metabolismo , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Regulación hacia Abajo , Células HEK293 , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patología , MicroARNs/genética , Transfección , Proteína p53 Supresora de Tumor/genética
9.
Cells ; 9(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854442

RESUMEN

Tumor-infiltrating T cell rescue by programmed cell death receptor-1 (PD-1)/PD-1 ligand-1 (PD-L1) immune checkpoint blockade is a recommended treatment for malignant diseases, including metastatic non-small-cell lung cancer (mNSCLC), malignant melanoma (MM), head and neck, kidney, and urothelial cancer. Monoclonal antibodies (mAbs) against either PD-1 or PD-L1 are active agents for these patients; however, their use may be complicated by unpredictable immune-related adverse events (irAEs), including immune-related pneumonitis (IRP). We carried out a retrospective multi-institutional statistical analysis to investigate clinical and biological parameters correlated with IRP rate on a cohort of 256 patients who received real-world treatment with PD-1/PD-L1 blocking mAbs. An independent radiological review board detected IRP in 29 patients. We did not find statistical IRP rate correlation with gender, tumor type, specific PD-1 or PD-L1 blocking mAbs, radiation therapy, inflammatory profile, or different irAEs. A higher IRP risk was detected only in mNSCLC patients who received metronomic chemotherapy +/- bevacizumab compared with other treatments prior PD-1/PD-L1 blockade. Moreover, we detected a strong correlation among the IRP rate and germinal expression of HLA-B*35 and DRB1*11, alleles associated to autoimmune diseases. Our findings may have relevant implications in predicting the IRP rate in mNSCLC patients receiving PD-1/PD-L1 blockade and need to be validated on a larger patient series.


Asunto(s)
Genes MHC Clase I/genética , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia/métodos , Neumonía/inducido químicamente , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
10.
Cancers (Basel) ; 12(7)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664483

RESUMEN

Abstract: Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.

11.
J Cell Physiol ; 235(6): 5213-5222, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31838757

RESUMEN

In Italy, in the eastern area of the Campania region, the illegal dumping and burning of waste have been documented, which could potentially affect the local population's health. In particular, toxic waste exposure has been suggested to associate with increased cancer development/mortality in these areas, although a causal link has not yet been established. In this pilot study, we evaluated blood levels of toxic heavy metals and persistent organic pollutants (POPs) in 95 patients with different cancer types residing in this area and in 27 healthy individuals. While we did not find any significant correlation between the blood levels of POPs and the provenance of the patients, we did observe high blood concentrations of heavy metals in some municipalities, including Giugliano, where many illegal waste disposal sites have previously been documented. Our results showed that patients with different cancer types from Giugliano had higher blood levels of heavy metals than healthy controls. Despite the obvious limitations of this exploratory study, our preliminary observations encourage further research assessing the possible association between exposure to hazardous waste, increased blood metals, and increased risk of cancer.


Asunto(s)
Detección Precoz del Cáncer , Metales Pesados/sangre , Neoplasias/sangre , Contaminantes Orgánicos Persistentes/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Italia/epidemiología , Masculino , Metales Pesados/toxicidad , Persona de Mediana Edad , Neoplasias/inducido químicamente , Neoplasias/patología , Contaminantes Orgánicos Persistentes/toxicidad , Adulto Joven
12.
Front Oncol ; 9: 564, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31355131

RESUMEN

Background: Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure that urgently requires effective therapeutic strategies. Current treatments are unable to increase significantly patient survival, which is often limited to <1 year from diagnosis. Virotherapy, based on the use of oncolytic viruses that exert anti-cancer effects by direct cell lysis and through the induction of anti-tumor immune response, represents an alternative therapeutic option for rare tumors with limited life expectancy. In this study, we propose the use of the adenovirus dl922-947, engineered to allow selective replication in cancer cells, to counteract MPM. Methods: We performed a thorough preclinical assessment of dl922-947 effects in a set of MPM cell lines and xenografts. Cytotoxicity of dl922-947 alone and in combination assays was evaluated by sulforhodamine B assay. Cell cycle, calreticulin expression, and high mobility group box protein 1 (HMGB1) secretion were determined by flow cytometry, whereas ATP content was determined by a luminescence-based bioassay. The modulation of angiogenic factors in MPM-infected cells was evaluated through ELISA. Results: We found that dl922-947 infection exhibits cytotoxic effects in MPM cell lines, affecting cell viability, cell cycle progression, and regulating main hallmarks of immunogenic cell death inducing calreticulin surface exposure, HMGB1 and ATP release. Our results also suggest that dl922-947 may affect angiogenic signals by regulation of VEGF-A and IL-8 secretion. Furthermore, dl922-947 shows anti-tumor efficacy in murine xenograft models reducing tumor growth and enhancing survival. Finally, the combination with cisplatin potentiated the cytotoxic effect of dl922-947. Conclusions: Overall our data identify virotherapy, based on the use of dl922-947, as a new possible therapeutic strategy against MPM, which could be used alone, in combination with standard chemotherapy drugs, as shown here, or other approaches also aimed at enhancing the antitumoral immune response elicited by the virus.

13.
Int J Oncol ; 54(6): 2189-2199, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31081046

RESUMEN

Glioblastoma (GB) is the most common and aggressive malignant tumor of the central nervous system. Despite current intensive treatment regimens, consisting of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ) chemotherapy, the prognosis of patients with GB remains extremely poor. Considering that alterations of the p53 tumor suppressor pathway have a key role in both GB development and resistance to TMZ treatment, the re­activation of p53 could be an effective therapeutic approach against GB. In this study, we challenged p53 wild­type and mutant GB cell lines with RITA, a molecule originally identified for its ability to restore p53 functions, although it was subsequently shown to act also through p53­independent mechanisms. We examined the effects of RITA on GB cell viability, through MTS and clonogenic assays, and analyzed cell death through cytoflourimetric analyses. In all the tested GB cell lines, RITA significantly reduced the cell proliferative and clonogenic potential and induced cell accumulation in the S and/or G2/M cell cycle phases and massive p53­dependent apoptosis. Moreover, RITA was more effective than the well­known p53 re­activating molecule, nutlin­3, and did not affect the viability of normal astrocytes. In addition, RITA decreased survivin expression and induced DNA damage, two mechanisms that likely contribute to its anti­tumor effects. Furthermore, RITA synergized with TMZ and was able to decrease the expression of MGMT, which is a crucial player in TMZ resistance. Thus, although further studies are warranted to clarify the exact mechanisms of action of RITA, the data of this study suggest the potential of such an approach for GB therapy, which may also help to overcome resistance to TMZ.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Furanos/farmacología , Glioblastoma/metabolismo , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Imidazoles/farmacología , Mutación , Piperazinas/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética
14.
J Cell Physiol ; 234(12): 23268-23278, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31140616

RESUMEN

The major cause of end-stage renal disease is the diabetic nephropathy. Oxidative stress contributes to the development of type II diabetes mellitus (T2DM). In this study we have evaluated the effect of a diet with a new standardized of red orange and lemon extract (RLE) rich in anthocyanins (ANT) in the progression of the kidney disease on Zucker diabetic fatty rats. Oxidative stress and renal function were analyzed. In diabetic rats, the RLE restored the blood glucose levels, body weight, and normalized the reactive oxygen species (ROS) total pathways. The kidney inflammation, in diabetic rats, has not shown significant change, showing that the oxidative stress rather than to inflammatory processes is a triggering factor in the renal complication associated with T2DM. Therefore, the administration of the RLE prevents this complication and this effect could be related to the inhibition of ROS production.


Asunto(s)
Antioxidantes/farmacología , Nefropatías Diabéticas/patología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antocianinas/farmacología , Citrus , Citrus sinensis , Color , Diabetes Mellitus Experimental , Ratas , Ratas Zucker
15.
Cancer Biol Ther ; 20(1): 42-51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30409104

RESUMEN

Caprine Herpesvirus type 1 (CpHV-1) is a species-specific herpes virus able to induce apoptosis in several biological systems. In the present study we aimed to investigate the ability of CpHV-1 to reduce cells viability, to replicate and to cause cell death also in human cancer cell lines. We tested the CpHV-1 effects on HEL-299, Vero, MDA-MB-468, HeLa, U2OS, PC3, A549 and K562 neoplastic cell lines and on MDBK cells. Firstly, we evaluated the effect of CpHV-1 infection on cell viability by MTT assay and our data showed that CpHV-1 can induce a marked cytopathic effect (CPE) in most of cell lines tested, except for HEL-299, Vero and K562 cells. The reduction of cell viability was associated with a significant increase of viral production. We next investigated if CpHV-1 was able to induce cell death and so through western blotting analysis we evaluated cleaved caspase 3, LC3II and p62 protein levels after infection. Caspase 3 activation was detected in MDBK cells and, even if at different times p.i., also in MDA-MB-468, U2OS, and PC3 cell lines, while LC3II increase and concomitant p62 protein reduction were observed only in U2OS, and A549 cells, no significant alteration of these proteins was observed in the other cell lines tested. Finally, to confirm virus ability to trigger apoptosis we performed an Annexin-V apoptosis test after 24 h p.i. Although we need to further explore mechanisms underlying CpHV-1 treatment, this study could serve as the basis for the development of new treatment options aiming to fight several cancer types.


Asunto(s)
Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Varicellovirus/inmunología , Animales , Apoptosis/inmunología , Autofagia/inmunología , Bovinos , Línea Celular Tumoral , Supervivencia Celular/inmunología , Chlorocebus aethiops , Humanos , Neoplasias/inmunología , Pruebas de Toxicidad , Células Vero
16.
J Cell Physiol ; 232(1): 129-35, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27037775

RESUMEN

Ewing sarcoma (ES) is a highly aggressive bone and soft tissue cancer, representing the second most common primary malignant bone tumor in children and adolescents. Although the development of a multimodal therapy, including both local control (surgery and/or radiation) and systemic multidrug chemotherapy, has determined a significant improvement in survival, patients with metastatic and recurrent disease still face a poor prognosis. Moreover, considering that ES primarily affects young patients, there are concerns about long-term adverse effects of the therapy. Therefore, more rational strategies, targeting specific molecular alterations underlying ES, are required. Recent studies suggest that SRC family kinases (SFKs), which are aberrantly activated in most cancer types, could represent key therapeutic targets also for ES. Here, we challenged ES cell lines with a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221), which was previously shown to be a valuable proapoptotic agent in other tumor types while not affecting normal cells. We observed that SI221 significantly reduced ES cell viability and proved to be more effective than the well-known SFK inhibitor PP2. SI221 was able to induce apoptosis in ES cells and also reduced ES cell clonogenic potential. Furthermore, SI221 was also able to reduce ES cell migration. At the molecular level, our data suggest that SFK inhibition through SI221 could reduce ES cell viability at least in part by hindering an SFK-NOTCH1 receptor-p38 mitogen-activated protein kinase (MAPK) axis. Overall, our study suggests a potential application of specific SFK inhibition in ES therapy. J. Cell. Physiol. 232: 129-135, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Óseas/metabolismo , Movimiento Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Sarcoma de Ewing/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Pirazoles/química , Pirimidinas/química , Familia-src Quinasas/metabolismo
17.
J Cell Physiol ; 231(8): 1832-41, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26679758

RESUMEN

Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 and p27 CDK-inhibitors. Let-7d also decreased sarcosphere-and-colony forming ability, two features associated with self-renewing, and it reduced the expression of stemness genes, including Oct3/4, Sox2, Nanog, Lin28B, and HMGA2. Moreover, let-7d induced mesenchymal-to-epithelial-transition, as shown by both N-Cadherin-E-cadherin-switch and decrease in vimentin. Surprisingly, such switch was accompanied by enhanced migratory/invasive capacities, with a strong increase in MMP9, CXCR4 and VersicanV1. Let-7d- overexpression also reduced cell sensitivity to apoptosis induced by both serum-starvation and various chemotherapy drugs, concomitant with decrease in caspase-3 and increase in BCL2 expression. Our data suggest that let-7d in 3AB-OS-CSCs could induce plastic-transitions from CSCs-to-non-CSCs and vice-versa. To our knowledge this is the first study to comprehensively examine the expression and functions of let-7d in OS-CSCs. By showing that let-7d has both tumor suppressor and oncogenic functions in this context, our findings suggest that, before prospecting new therapeutic strategies based on let-7d modulation, it is urgent to better define its multiple functions. J. Cell. Physiol. 231: 1832-1841, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Óseas/metabolismo , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Osteosarcoma/metabolismo , Antineoplásicos/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Autorrenovación de las Células , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Invasividad Neoplásica , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/patología , Fenotipo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
18.
Oncotarget ; 6(14): 12421-35, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25762618

RESUMEN

Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS.


Asunto(s)
Antineoplásicos/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Rabdomiosarcoma/patología , Familia-src Quinasas/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Diferenciación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Reacción en Cadena de la Polimerasa , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
J Cell Biochem ; 116(5): 856-63, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25521525

RESUMEN

Glioblastoma (GB) is the most common and aggressive primary tumor of the central nervous system. The current standard of care for GB consists of surgical resection, followed by radiotherapy combined with temozolomide chemotherapy. However, despite this intensive treatment, the prognosis remains extremely poor. Therefore, more effective therapies are urgently required. Recent studies indicate that SRC family kinases (SFKs) could represent promising molecular targets for GB therapy. Here, we challenged four GB cell lines with a new selective pyrazolo[3,4-d]pyrimidine derivative SFK inhibitor, called SI221. This compound exerted a significant cytotoxic effect on GB cells, without significantly affecting non-tumor cells (primary human skin fibroblasts), as evaluated by MTS assay. We also observed that SI221 was more effective than the well-known SFK inhibitor PP2 in GB cells. Notably, despite the high intrinsic resistance to apoptosis of GB cells, SI221 was able to induce this cell death process in all the GB cell lines, as observed through cytofluorimetric analysis and caspase-3 assay. SI221 also exerted a long-term inhibition of GB cell growth and was able to reduce GB cell migration, as shown by clonogenic assay and scratch test, respectively. Moreover, through in vitro pharmacokinetic assays, SI221 proved to have a high metabolic stability and a good potential to cross the blood brain barrier, which is an essential requirement for a drug intended to treat brain tumors. Therefore, despite the need of developing strategies to improve SI221 solubility, our results suggest a potential application of this selective SFK inhibitor in GB therapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Glioblastoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Familia-src Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Humanos , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Pirimidinas/química
20.
J Cell Physiol ; 230(4): 802-5, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25205458

RESUMEN

pRb2/p130 is a key tumor suppressor, whose oncosuppressive activity has mainly been attributed to its ability to negatively regulate cell cycle by interacting with the E2F4 and E2F5 transcription factors. Indeed, pRb2/p130 has been found altered in various cancer types in which it functions as a valuable prognostic marker. Here, we analyzed pRb2/p130 expression in gastric cancer tissue samples of diffuse histotype, in comparison with their normal counterparts. We found a cytoplasmic localization of pRb2/p130 in cancer tissue samples, whereas, in normal counterparts, we observed the expected nuclear localization. pRb2/p130 cytoplasmic delocalization can lead to cell cycle deregulation, but considering the emerging involvement of pRb2/p130 in other key cellular processes, it could contribute to gastric tumorigenesis also through other mechanisms. Our data support the necessity of further investigations to verify the possibility of using pRb2/p130 as a biomarker or potential therapeutic target for diffuse gastric cancer.


Asunto(s)
Proteína Sustrato Asociada a CrK/metabolismo , Citoplasma/metabolismo , Proteínas Salivales Ricas en Prolina/metabolismo , Neoplasias Gástricas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , División Celular/fisiología , Femenino , Genes Supresores de Tumor/fisiología , Humanos , Masculino , Fosfoproteínas/fisiología , Proteína de Retinoblastoma/metabolismo , Proteína p130 Similar a la del Retinoblastoma/metabolismo , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...