Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(15): 10255-10267, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34270218

RESUMEN

Detailed offline speciation of gas- and particle-phase organic compounds was conducted using gas/liquid chromatography with traditional and high-resolution mass spectrometers in a hybrid targeted/nontargeted analysis. Observations were focused on an unoccupied home and were compared to two other indoor sites. Observed gas-phase organic compounds span the volatile to semivolatile range, while functionalized organic aerosols extend from intermediate volatility to ultra-low volatility, including a mix of oxygen, nitrogen, and sulfur-containing species. Total gas-phase abundances of hydrocarbon and oxygenated gas-phase complex mixtures were elevated indoors and strongly correlated in the unoccupied home. While gas-phase concentrations of individual compounds generally decreased slightly with greater ventilation, their elevated ratios relative to controlled emissions of tracer species suggest that the dilution of gas-phase concentrations increases off-gassing from surfaces and other indoor reservoirs, with volatility-dependent responses to dynamically changing environmental factors. Indoor-outdoor emissions of gas-phase intermediate-volatility/semivolatile organic hydrocarbons from the unoccupied home averaged 6-11 mg h-1, doubling with ventilation. While the largest single-compound emissions observed were furfural (61-275 mg h-1) and acetic acid, observations spanned a wide range of individual volatile chemical products (e.g., terpenoids, glycol ethers, phthalates, other oxygenates), highlighting the abundance of long-lived reservoirs resulting from prior indoor use or materials, and their gradual transport outdoors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
2.
Indoor Air ; 31(4): 1199-1216, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33484190

RESUMEN

Reactive oxygen species (ROS) are an important contributor to adverse health effects associated with ambient air pollution. Despite infiltration of ROS from outdoors, and possible indoor sources (eg, combustion), there are limited data available on indoor ROS. In this study, part of the second phase of Air Composition and Reactivity from Outdoor aNd Indoor Mixing campaign (ACRONIM-2), we constructed and deployed an online, continuous, system to measure extracellular gas- and particle-phase ROS during summer in an unoccupied residence in St. Louis, MO, USA. Over a period of one week, we observed that the non-denuded outdoor ROS (representing particle-phase ROS and some gas-phase ROS) concentration ranged from 1 to 4 nmol/m3 (as H2 O2 ). Outdoor concentrations were highest in the afternoon, coincident with peak photochemistry periods. The indoor concentrations of particle-phase ROS were nearly equal to outdoor concentrations, regardless of window-opening status or air exchange rates. The indoor/outdoor ratio of non-denuded ROS (I/OROS ) was significantly less than 1 with windows open and even lower with windows closed. Combined, these observations suggest that gas-phase ROS are efficiently removed by interior building surfaces and that there may be an indoor source of particle-phase ROS.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis , Especies Reactivas de Oxígeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...