Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10517, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714722

RESUMEN

Ice XIX is a partly hydrogen-ordered polymorph related to disordered ice VI, similar to ice XV. We here investigate the order-order-disorder sequence ice XIX→ice XV→ice VI based on calorimetry at ambient pressure both for D2O and H2O-ice XIX. From these data we extract configurational entropy differences between ice XIX, ice XV and ice VI. This task is complex because, unlike for all other ices, the order-disorder transition from ice XIX to ice VI takes place in two steps via ice XV. Even more challenging, these two steps take place in an overlapping manner, so that careful separation of slow kinetics is necessary. This is evidenced best by changing the heating rate in calorimetry experiments: For fast heating experiments the second step, disordering of ice XV, is suppressed because the first step, formation of ice XV from ice XIX, is too slow. The transient state ice VI‡ that is initially produced upon ice XIX decay then does not have enough time to convert to ice XV, but remains disordered all along. In order to tackle the challenge to determine the entropy difference between ice XIX and VI as well as the entropy difference between ice XV and VI we employ two different approaches that allow assessing the impact of kinetics on the entropy change. "Single peak integration" defines a kinetically limited result, but "combined peak integration" allows estimation of the true thermodynamic values. Our best estimate for the true value shows ice XIX to be much more ordered than ice XV (25 ± 3% vs 9 ± 4% of the Pauling entropy). For D2Oice XIX samples we obtain 28% of order, but only when a small number of fast H-isotope defects are used. In the second part we use these results to estimate the location of the ice XIX phase boundary both for protiated and deuterated ice XIX. The initial Clapeyron slope at ambient pressure is determined from the combination of neutron powder diffraction volume differences and calorimetry entropy differences data to be 21 K GPa-1 with an order-disorder transition temperature To-d(0.0 GPa) = 103 ± 1 K. An in situ bracketing experiment at 1.8 GPa yields To-d(1.8 GPa) = 116 ± 3 K, i.e., the phase boundary slope flattens at higher pressures. These data allow us to determine the region of thermodynamic stability of ice XIX in the phase diagram and to explain the surprising isotope shift reversal at 1.6 GPa compared to 0.0 GPa, i.e., why D2O-ice XIX disorders at lower temperatures than H2O-ice XIX at 1.6 GPa, but at higher temperatures at ambient pressures.

2.
J Am Chem Soc ; 146(8): 5569-5579, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38353048

RESUMEN

The classical view of the structural changes that occur at the ferroelectric transition in perovskite-structured systems, such as BaTiO3, is that polarization occurs due to the off-center displacement of the B-site cations. Here, we show that in the bismuth sodium titanate (BNT)-based composition 0.2(Ba0.4Sr0.6TiO3)-0.8(Bi0.5Na0.5TiO3), this model does not accurately describe the structural situation. Such BNT-based systems are of interest as lead-free alternatives to currently used materials in a variety of piezo-/ferroelectric applications. A combination of high-resolution powder neutron diffraction, impedance spectroscopy, and ab initio calculations reveals that Ti4+ contributes less than a third in magnitude to the overall polarization and that the displacements of the O2- ions and the A-site cations, particularly Bi3+, are very significant. The detailed examination of the ferroelectric transition in this system offers insights applicable to the understanding of such transitions in other ferroelectric perovskites, particularly those containing lone pair elements.

3.
Nat Commun ; 15(1): 909, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291342

RESUMEN

Low temperature ionic conducting materials such as OH- and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH-/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic conductivity of approximately 0.01 S cm-1 at 90 °C in both water and wet air, which has been demonstrated by direct ammonia fuel cells. Neutron diffraction confirms the presence of OD bonds in the lattice of deuterated SrZr0.8Y0.2O3-δ. The OH- ionic conduction of CaZr0.8Y0.2O3-δ in water was demonstrated by electrolysis of both H218O and D2O. The ionic conductivity of CaZr0.8Y0.2O3-δ in 6 M KOH solution is around 0.1 S cm-1 at 90 °C, 100 times higher than that in pure water, indicating increased OH- ionic conductivity with a higher concentration of feed OH- ions. Density functional theory calculations suggest the diffusion of OH- ions relies on oxygen vacancies and temporarily formed hydrogen bonds. This opens a window to discovering new ceramic ionic conducting materials for near ambient temperature fuel cells, electrolysers and other electrochemical devices.

4.
Chemistry ; 29(57): e202302057, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37449834

RESUMEN

The structure and vibrational spectroscopy of centrohexaindane, 1, was investigated. This unusual molecule has a quaternary carbon atom that is coordinated to four further such quaternary carbon atoms as its core, each pair of which is bonded to an ortho-phenylene unit. Previous NMR studies have shown that the molecule has tetrahedral (Td ) symmetry in solution. The infrared and Raman spectra of chloroform and deuterochloroform solutions of 1 are completely in agreement with this conclusion, as the only modes that are visible are those allowed for Td symmetry. This is not the case in the solid state: X-ray powder diffraction indicates that the unit cell is triclinic or monoclinic with a volume in excess of 4000 Å3 . The vibrational spectroscopy is consistent with C1 site symmetry and the presence of at least two molecules in the primitive cell. It is likely that the space group is centrosymmetric.

5.
Inorg Chem ; 61(50): 20316-20325, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36472578

RESUMEN

Antiferroelectric (AFE) materials have been intensively studied due to their potential uses in energy storage applications and energy conversion. These materials are characterized by double polarization-electric field (P-E) hysteresis loops and nonpolar crystal structures. Unusually, in the present work, Sr1.68La0.32Ta1.68Ti0.32O7 (STLT32), Sr1.64La0.36Ta1.64Ti0.36O7 (STLT36), and Sr1.85Ca0.15Ta2O7 (SCT15), lead-free perovskite layered structure (PLS) materials, are shown to exhibit AFE-like double P-E hysteresis loops despite maintaining a polar crystal structure. The double hysteresis loops are present over wide ranges of electric field and temperature. While neutron diffraction and piezoresponse force microscopy results indicate that the STLT32 system should be ferroelectric at room temperature, the observed AFE-like electrical behavior suggests that the electrical response is dominated by a weakly polar phase with a field-induced transition to a more strongly polar phase. Variable-temperature dielectric measurements suggest the presence of two-phase transitions in STLT32 at ca. 250 and 750 °C. The latter transition is confirmed by thermal analysis and is accompanied by structural changes in the layers, such as in the degree of octahedral tilting and changes in the perovskite block width and interlayer gap, associated with a change from non-centrosymmetric to centrosymmetric structures. The lower-temperature transition is more diffuse in nature but is evidenced by subtle changes in the lattice parameters. The dielectric properties of an STLT32 ceramic at microwave frequencies was measured using a coplanar waveguide transmission line and revealed stable permittivity from 1 kHz up to 20 GHz with low dielectric loss. This work represents the first observation of its kind in a PLS-type material.

6.
J Am Chem Soc ; 144(38): 17376-17386, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112983

RESUMEN

We have re-investigated the structure and vibrational spectroscopy of the iconic molecule iron pentacarbonyl, Fe(CO)5, in the solid state by neutron scattering methods. In addition to the known C2/c structure, we find that Fe(CO)5 undergoes a displacive ferroelastic phase transition at 105 K to a P1̅ structure. We propose that this is a result of certain intermolecular contacts becoming shorter than the sum of the van der Waals radii, resulting in an increased contribution of electrostatic repulsion to these interactions; this is manifested as a strain that breaks the symmetry of the crystal. Evaluation of the strain in a triclinic crystal required a description of the spontaneous strain in terms of a second-rank tensor, something that is feasible with high-precision powder diffraction data but practically very difficult using strain gauges on a single crystal of such low symmetry. The use of neutron vibrational spectroscopy (which is not subject to selection rules) has allowed the observation of all the fundamentals below 700 cm-1 for the first time. This has resulted in the re-assignment of several of the modes. Surprisingly, density functional theory calculations that were carried out to support the spectral assignments provided a poor description of the spectra.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 459-475, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35702963

RESUMEN

Experimental and computational studies of ammonium carbamate have been carried out, with the objective of studying the elastic anisotropy of the framework manifested in (i) the thermal expansion and (ii) the compressibility; furthermore, the relative thermodynamic stability of the two known polymorphs has been evaluated computationally. Using high-resolution neutron powder diffraction data, the crystal structure of α-ammonium carbamate (ND4·ND2CO2) has been refined [space group Pbca, Z = 8, with a = 17.05189 (15), b = 6.43531 (7), c = 6.68093 (7) Šand V = 733.126 (9) Å3 at 4.2 K] and the thermal expansivity of α-ammonium carbamate has been measured over the temperature range 4.2-180 K. The expansivity shows a high degree of anisotropy, with the b axis most expandable. The ab initio computational studies were carried out on the α- and ß-polymorphs of ammonium carbamate using density functional theory. Fitting equations of state to the P(V) points of the simulations (run athermally) gave the following values: V0 = 744 (2) Å3 and bulk modulus K0 = 16.5 (4) GPa for the α-polymorph, and V0 = 713.6 (5) Å3 and K0 = 24.4 (4) GPa for the ß-polymorph. The simulations show good agreement with the thermoelastic behaviour of α-ammonium carbamate. Both phases show a high-degree of anisotropy; in particular, α-ammonium carbamate shows unusual compressive behaviour, being determined to have negative linear compressibility (NLC) along its a axis above 5 GPa. The thermodynamically stable phase at ambient pressure is the α-polymorph, with a calculated enthalpy difference with respect to the ß-polymorph of 0.399 kJ mol-1; a transition to the ß-polymorph could occur at ∼0.4 GPa.


Asunto(s)
Dióxido de Carbono , Neutrones , Carbamatos , Difracción de Polvo , Polvos
8.
Inorg Chem ; 60(12): 8507-8518, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34060816

RESUMEN

The sequence of transitions between different phases of BiNbO4 has been thoroughly investigated and clarified using thermal analysis, high-resolution neutron diffraction, and Raman spectroscopy. The theoretical optical phonon modes of the α-phase have been calculated. Based on thermoanalytical data supported by density functional theory (DFT) calculations, the ß-phase is proposed to be metastable, while the α- and γ-phases are stable below and above 1040 °C, respectively. Accurate positional parameters for oxygen positions in the three main polymorphs (α, ß, and γ) are presented and the structural relationships between these polymorphs are discussed. Even though no significant changes, only relaxation phenomena, are observed in the dielectric behavior of α-BiNbO4 below 1000 °C, evidence of two further subtle transitions at ∼350 and 600 °C is presented through careful analysis of structural parameters from variable temperature neutron diffraction measurements. Such phase variations are also evident in the phonon modes in Raman spectra and supported by changes in the thermoanalytical data. These subtle transitions may correspond to the previously proposed antiferroelectric to ferroelectric and ferroelectric to paraelectric phase transitions, respectively.

10.
Nat Commun ; 12(1): 1128, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602946

RESUMEN

Ice polymorphs usually appear as hydrogen disorder-order pairs. Ice VI has a wide range of thermodynamic stability and exists in the interior of Earth and icy moons. Our previous work suggested ice ß-XV as a second polymorph deriving from disordered ice VI, in addition to ice XV. Here we report thermal and structural characterization of the previously inaccessible deuterated polymorph using ex situ calorimetry and high-resolution neutron powder diffraction. Ice ß-XV, now called ice XIX, is shown to be partially antiferroelectrically ordered and crystallising in a √2×√2×1 supercell. Our powder data recorded at subambient pressure fit best to the structural model in space group [Formula: see text]. Key to the synthesis of deuterated ice XIX is the use of a DCl-doped D2O/H2O mixture, where the small H2O fraction enhances ice XIX nucleation kinetics. In addition, we observe the transition from ice XIX to its sibling ice XV upon heating, which proceeds via a transition state (ice VI‡) containing a disordered H-sublattice. To the best of our knowledge this represents the first order-order transition known in ice physics.

11.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 7): 1062-1069, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32695453

RESUMEN

Phenol hemihydrate, C5H5OH·0.5H2O, crystallizes in the space group Pbcn, Z = 8. The previously published crystal structure [CSD refcode PHOLHH; Meuthen & von Stackelberg (1960 ▸). Z. Elektrochem. 64, 387-390] is shown to be incorrect. Pairs of phenol mol-ecules, related by an inversion centre, are bridged by one water mol-ecule via O-H⋯O hydrogen bonds; an extended R 4 4(8) hydrogen-bonded motif links these inversion dimers into chains parallel to the c axis. Packing of the chains is achieved by weaker T-shaped C-H⋯π inter-actions between nearest neighbour phenol mol-ecules in the bc plane. Analysis of the thermal expansion and parameterization with a Debye model in terms of the linear elastic moduli shows that the c axis is ∼3 times stiffer than the two orthogonal directions.

12.
Nat Mater ; 19(6): 663-668, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32015533

RESUMEN

Amongst the more than 18 different forms of water ice, only the common hexagonal phase and the cubic phase are present in nature on Earth. Nonetheless, it is now widely recognized that all samples of 'cubic ice' discovered so far do not have a fully cubic crystal structure but instead are stacking-disordered forms of ice I (namely, ice Isd), which contain both hexagonal and cubic stacking sequences of hydrogen-bonded water molecules. Here, we describe a method to obtain large quantities of cubic ice Ic with high structural purity. Cubic ice Ic is formed by heating a powder of D2O ice XVII obtained from annealing of pristine C0 hydrate samples under dynamic vacuum. Neutron diffraction experiments performed on two different instruments and Raman spectroscopy measurements confirm the structural purity of the cubic ice, Ic. These findings contribute to a better understanding of ice I polymorphism and the existence of the two natural ice forms.

13.
Dalton Trans ; 47(39): 14041-14051, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30232497

RESUMEN

The apatite-like NaLa9(GeO4)6O2:Nd3+,Ho3+ phosphor is prepared using the solid-state method. Rietveld refinement of high-resolution time-of-flight neutron powder diffraction measurements indicate that this compound crystallizes in the hexagonal system with space group P63/m, Z = 1 and unit cell parameters a = 9.88903(6) Å, c = 7.25602(5) Å, V = 614.521(7) Å3 at room temperature. The 4f sites are statistically occupied by La, Nd and Na, while 6h sites are occupied by La and Nd. Luminescence in the near- and middle-IR range caused by the transitions in neodymium and holmium ions is excited under 808 nm laser diode radiation. The highest emission intensity in NaLa9-x-yNdxHoy(GeO4)6O2 is attained at trace amounts of holmium, and it decreases sharply when y increases to 0.01. The IR phosphors have a good thermal stability and exhibit a very weak upconversion emission in the red spectral range upon 808 nm excitation. A scheme of excitation and emission pathways involving ground/excited state absorption, energy transfer, cross-relaxation, nonradiative multiphonon relaxation processes in Nd3+ and Ho3+ ions has been proposed. The data analysis indicates that Nd3+ ions serve as sensitizers for Ho3+ ions in these compounds, stimulating intense 2.1 µm and 2.7 µm emissions. These apatite-related germanate phosphors are promising materials for near- and middle-infrared solid-state lighting applications.

14.
J Appl Crystallogr ; 51(Pt 3): 685-691, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29896057

RESUMEN

A low-temperature stage for X-ray powder diffraction in Bragg-Brentano reflection geometry is described. The temperature range covered is 40-315 K, with a temperature stability at the sample within ±0.1 K of the set point. The stage operates by means of a Gifford-McMahon (GM) closed-cycle He refrigerator; it requires no refrigerants and so can run for an extended period (in practice at least 5 d) without intervention by the user. The sample is cooled both by thermal conduction through the metal sample holder and by the presence of He exchange gas, at ambient pressure, within the sample chamber; the consumption of He gas is extremely low, being only 0.1 l min-1 during normal operation. A unique feature of this cold stage is that samples may be introduced into (and removed from) the stage at any temperature in the range 80-300 K, and thus materials which are not stable at room temperature, such as high-pressure phases that are recoverable to ambient pressure after quenching to liquid nitro-gen temperatures, can be readily examined. A further advantage of this arrangement is that, by enabling the use of pre-cooled samples, it greatly reduces the turnaround time when making measurements on a series of specimens at low temperature.

15.
J Appl Crystallogr ; 51(Pt 3): 692-705, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29896058

RESUMEN

An apparatus is described for the compression of samples to ∼2 GPa at temperatures from 80 to 300 K, rapid chilling to 80 K whilst under load and subsequent recovery into liquid nitro-gen after the load is released. In this way, a variety of quenchable high-pressure phases of many materials may be preserved for examination outside the high-pressure sample environment, with the principal benefit being the ability to obtain high-resolution powder diffraction data for phase identification and structure solution. The use of this apparatus, in combination with a newly developed cold-loadable low-temperature stage for X-ray powder diffraction (the PheniX-FL), is illustrated using ice VI (a high-pressure polymorph of ordinary water ice that is thermodynamically stable only above ∼0.6 GPa) as an example. A second example using synthetic epsomite (MgSO4·7H2O) reveals that, at ∼1.6 GPa and 293 K, it undergoes incongruent melting to form MgSO4·5H2O plus brine, contributing to a long-standing debate on the nature of the high-pressure behaviour of this and similar highly hydrated materials. The crystal structure of this new high-pressure polymorph of MgSO4·5H2O has been determined at 85 K in space group Pna21 from the X-ray powder diffraction pattern of a sample recovered into liquid nitro-gen and is found to differ from that of the known ambient-pressure phase of MgSO4·5H2O (pentahydrite, space group ), consisting of corner-sharing MgO6-SO4 ion pairs rather than infinite corner-sharing chains.

16.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 2): 196-216, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29616994

RESUMEN

Accurate and precise lattice parameters for D2O and H2O varieties of hexagonal ice (ice Ih, space group P63/mmc) have been obtained in the range 1.6 to 270 K. Precision of the lattice parameters (∼0.0002% in a and 0.0004% in c for D2O, 0.0008% in a and 0.0015% in c for H2O) is ensured by use of the time-of-flight method on one of the longest primary neutron flight-path instruments in the world, the High-Resolution Powder Diffractometer at the ISIS neutron source. These data provide a more precise description of the negative thermal expansion of the material at low temperatures than the previous synchrotron `gold standard' [Röttger et al. (1994). Acta Cryst. B50, 644-648], including the region below 10 K where the lattice parameters saturate. The volume expansivity of both isotopologues turns negative below 59-60 K, in excellent agreement with a recent dilatometry study. The axial expansivities are highly isotropic (differing by < 1% in D2O ice Ih). Furthermore, the c/a ratio of different D2O ice samples exhibit a statistically significant dispersion of ∼0.015% below 150 K that appears to depend on the thermal history of the sample, which disappears on warming above 150 K. Similarly, H2O ice exhibits a `kink' in the c/a ratio at ∼115 K. The most plausible explanation is a freezing-in of the molecular reorientation process on cooling and subsequent relaxation on warming.

17.
Angew Chem Int Ed Engl ; 56(50): 15950-15953, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29083082

RESUMEN

Materials in the family of Prussian blue analogues (C3 H5 N2 )2 K[M(CN)6 ], where C3 H5 N2 is the imidazolium ion and M=Fe, Co, undergo two phase transitions with temperature; at low temperatures the imidazolium cations have an ordered configuration (C2/c), while in the intermediate- and high-temperature phases (both previously reported as R3‾m ) they are dynamically disordered. We show from high-resolution powder neutron diffraction data that the high-temperature phase has zero area thermal expansion in the ab-plane. Supported by Landau theory and single-crystal X-ray diffraction data, we re-evaluate the space group symmetry of the intermediate-temperature phase to R3‾ . This reveals that the low-to-intermediate temperature transition is due to competition between two different tilt patterns of the [M(CN)6 ]3- ions. Controlling the relative stabilities of these tilt patterns offers a potential means to tune the exploitable electric behaviour that arises from motion of the imidazolium guest.

18.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 10): 1438-1445, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27746937

RESUMEN

Single crystals of glycine zinc sulfate penta-hydrate [systematic name: hexa-aqua-zinc tetra-aquadiglycinezinc bis-(sulfate)], [Zn(H2O)6][Zn(C2H5NO2)2(H2O)4](SO4)2, have been grown by isothermal evaporation from aqueous solution at room temperature and characterized by single-crystal neutron diffraction. The unit cell contains two unique ZnO6 octa-hedra on sites of symmetry -1 and two SO4 tetra-hedra with site symmetry 1; the octa-hedra comprise one [tetra-aqua-diglycine zinc]2+ ion (centred on one Zn atom) and one [hexa-aqua-zinc]2+ ion (centred on the other Zn atom); the glycine zwitterion, NH3+CH2COO-, adopts a monodentate coordination to the first Zn atom. All other atoms sit on general positions of site symmetry 1. Glycine forms centrosymmetric closed cyclic dimers due to N-H⋯O hydrogen bonds between the amine and carboxyl-ate groups of adjacent zwitterions and exhibits torsion angles varying from ideal planarity by no more than 1.2°, the smallest values for any known glycine zwitterion not otherwise constrained by a mirror plane. This work confirms the H-atom locations estimated in three earlier single-crystal X-ray diffraction studies with the addition of independently refined fractional coordinates and Uij parameters, which provide accurate inter-nuclear X-H (X = N, O) bond lengths and consequently a more accurate and precise depiction of the hydrogen-bond framework.

19.
Acta Crystallogr C Struct Chem ; 72(Pt 3): 203-16, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26942430

RESUMEN

We have identified a new compound in the glycine-MgSO4-water ternary system, namely glycine magnesium sulfate trihydrate (or Gly·MgSO4·3H2O) {systematic name: catena-poly[[tetraaquamagnesium(II)]-µ-glycine-κ(2)O:O'-[diaquabis(sulfato-κO)magnesium(II)]-µ-glycine-κ(2)O:O']; [Mg(SO4)(C2D5NO2)(D2O)3]n}, which can be grown from a supersaturated solution at ∼350 K and which may also be formed by heating the previously known glycine magnesium sulfate pentahydrate (or Gly·MgSO4·5H2O) {systematic name: hexaaquamagnesium(II) tetraaquadiglycinemagnesium(II) disulfate; [Mg(D2O)6][Mg(C2D5NO2)2(D2O)4](SO4)2} above ∼330 K in air. X-ray powder diffraction analysis reveals that the trihydrate phase is monoclinic (space group P21/n), with a unit-cell metric very similar to that of recently identified Gly·CoSO4·3H2O [Tepavitcharova et al. (2012). J. Mol. Struct. 1018, 113-121]. In order to obtain an accurate determination of all structural parameters, including the locations of H atoms, and to better understand the relationship between the pentahydrate and the trihydrate, neutron powder diffraction measurements of both (fully deuterated) phases were carried out at 10 K at the ISIS neutron spallation source, these being complemented with X-ray powder diffraction measurements and Raman spectroscopy. At 10 K, glycine magnesium sulfate pentahydrate, structurally described by the `double' formula [Gly(d5)·MgSO4·5D2O]2, is triclinic (space group P-1, Z = 1), and glycine magnesium sulfate trihydrate, which may be described by the formula Gly(d5)·MgSO4·3D2O, is monoclinic (space group P21/n, Z = 4). In the pentahydrate, there are two symmetry-inequivalent MgO6 octahedra on sites of -1 symmetry and two SO4 tetrahedra with site symmetry 1. The octahedra comprise one [tetraaquadiglcyinemagnesium](2+) ion (centred on Mg1) and one [hexaaquamagnesium](2+) ion (centred on Mg2), and the glycine zwitterion, NH3(+)CH2COO(-), adopts a monodentate coordination to Mg2. In the trihydrate, there are two pairs of symmetry-inequivalent MgO6 octahedra on sites of -1 symmetry and two pairs of SO4 tetrahedra with site symmetry 1; the glycine zwitterion adopts a binuclear-bidentate bridging function between Mg1 and Mg2, whilst the Mg2 octahedra form a corner-sharing arrangement with the sulfate tetrahedra. These bridged polyhedra thus constitute infinite polymeric chains extending along the b axis of the crystal. A range of O-H...O, N-H...O and C-H...O hydrogen bonds, including some three-centred interactions, complete the three-dimensional framework of each crystal.


Asunto(s)
Complejos de Coordinación/química , Glicina/química , Sulfato de Magnesio/química , Glicina/análogos & derivados , Enlace de Hidrógeno , Neutrones , Difracción de Polvo , Difracción de Rayos X
20.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 7): 799-806, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26279871

RESUMEN

Time-of-flight neutron powder diffraction data have been measured from ∼90 mol% deuterated isotopologues of Na2MoO4·2H2O and Na2WO4·2H2O at 295 K to a resolution of sin (θ)/λ = 0.77 Å(-1). The use of neutrons has allowed refinement of structural parameters with a precision that varies by a factor of two from the heaviest to the lightest atoms; this contrasts with the X-ray based refinements where precision may be > 20× poorer for O atoms in the presence of atoms such as Mo and W. The accuracy and precision of inter-atomic distances and angles are in excellent agreement with recent X-ray single-crystal structure refinements whilst also completing our view of the hydrogen-bond geometry to the same degree of statistical certainty. The two structures are isotypic, space-group Pbca, with all atoms occupying general positions, being comprised of edge- and corner-sharing NaO5 and NaO6 polyhedra that form layers parallel with (010) inter-leaved with planes of XO4 (X = Mo, W) tetra-hedra that are linked by chains of water mol-ecules along [100] and [001]. The complete structure is identical with the previously described molybdate [Capitelli et al. (2006 ▸). Asian J. Chem. 18, 2856-2860] but shows that the purported three-centred inter-action involving one of the water mol-ecules in the tungstate [Farrugia (2007 ▸). Acta Cryst. E63, i142] is in fact an ordinary two-centred 'linear' hydrogen bond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...