Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Genet ; 50(6): 557-568, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31475748

RESUMEN

Together with their sister subspecies Bos taurus, zebu cattle (Bos indicus) have contributed to important socioeconomic changes that have shaped modern civilizations. Zebu cattle were domesticated in the Indus Valley 8000 years before present (YBP). From the domestication site, they expanded to Africa, East Asia, southwestern Asia and Europe between 4000 and 1300 YBP, intercrossing with B. taurus to form clinal variations of zebu ancestry across the landmass of Afro-Eurasia. In the past 150 years, zebu cattle reached the Americas and Oceania, where they have contributed to the prosperity of emerging economies. The zebu genome is characterized by two mitochondrial haplogroups (I1 and I2), one Y chromosome haplogroup (Y3) and three major autosomal ancestral groups (Indian-Pakistani, African and Chinese). Phenotypically, zebu animals are recognized by their hump, large ears and excess skin. They are rustic, resilient to parasites and capable of bearing the hot and humid climates of the tropics. Many resources are available to study the zebu genome, including commercial arrays of SNP, reference assemblies and publicly available genotypes and whole-genome sequences. Nevertheless, many of these resources were initially developed to support research and subsidize industrial applications in B. taurus, and therefore they can produce bias in data analysis. The combination of genomics with precision agriculture holds great promise for the identification of genetic variants affecting economically important traits such as tick resistance and heat tolerance, which were naturally selected for millennia and played a major role in the evolution of B. indicus cattle.


Asunto(s)
Bovinos/genética , Bovinos/fisiología , Animales , Evolución Biológica , Bovinos/anatomía & histología , Resistencia a la Enfermedad , Domesticación , Oído/anatomía & histología , Fertilidad , Variación Genética , Tamaño de los Órganos , Piel/anatomía & histología
2.
Anim Genet ; 49(6): 539-549, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30192028

RESUMEN

Progesterone signaling and uterine function are crucial in terms of pregnancy establishment. To investigate how the uterine tissue and its secretion changes in relation to puberty, we sampled tissue and uterine fluid from six pre- and six post-pubertal Brahman heifers. Post-pubertal heifers were sampled in the luteal phase. Gene expression of the uterine tissue was investigated with RNA-sequencing, whereas the uterine fluid was used for protein profiling with mass spectrometry. A total of 4034 genes were differentially expressed (DE) at a nominal P-value of 0.05, and 26 genes were significantly DE after Bonferroni correction (P < 3.1 × 10-6 ). We also identified 79 proteins (out of 230 proteins) that were DE (P < 1 × 10-5 ) in the uterine fluid. When we compared proteomics and transcriptome results, four DE proteins were identified as being encoded by DE genes: OVGP1, GRP, CAP1 and HBA. Except for CAP1, the other three had lower expression post-puberty. The function of these four genes hypothetically related to preparation of the uterus for a potential pregnancy is discussed in the context of puberty. All DE genes and proteins were also used in pathway and ontology enrichment analyses to investigate overall function. The DE genes were enriched for terms related to ribosomal activity. Transcription factors that were deemed key regulators of DE genes are also reported. Transcription factors ZNF567, ZNF775, RELA, PIAS2, LHX4, SOX2, MEF2C, ZNF354C, HMG20A, TCF7L2, ZNF420, HIC1, GTF3A and two novel genes had the highest regulatory impact factor scores. These data can help to understand how puberty influences uterine function.


Asunto(s)
Bovinos/genética , Proteoma , Maduración Sexual/genética , Transcriptoma , Útero/fisiología , Animales , Bovinos/fisiología , Femenino , Fase Luteínica , Análisis de Secuencia de ARN
3.
J Anim Sci ; 96(6): 2392-2398, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29788311

RESUMEN

The adipose tissue has been recognized as an active endocrine organ which can modulate numerous physiological processes such as metabolism, appetite, immunity, and reproduction. The aim of this study was to look for differentially abundant proteins and their biological functions in the abdominal adipose tissue between pre- and postpubertal Brahman heifers. Twelve Brahman heifers were divided into 2 groups and paired on slaughter day. Prepubertal heifers had never ovulated and postpubertal heifers were slaughtered on the luteal phase of their second estrous cycle. After ensuring the occurrence of puberty in postpubertal heifers, abdominal adipose tissue samples were collected. Mass spectrometry proteomic analysis identified 646 proteins and revealed that 171 proteins showed differential abundance in adipose tissue between the pre- and postpuberty groups (adjusted P-value < 0.05). Data are available via ProteomeXchange with identifier PXD009452. Using a list of 51 highly differentially abundant proteins as the target (adjusted P-value < 10-5), we found 14 enriched pathways. The results indicated that gluconeogenesis was enhanced when puberty approached. The metabolism of glucose, lipids, and AA in the adipose tissue mainly participated in oxidation and energy supply for heifers when puberty occurred. Our study also revealed the differentially abundant proteins were enriched for estrogen signaling and PI3K-Akt signaling pathways, which are known integrators of metabolism and reproduction. These results suggest new candidate proteins that may contribute to a better understanding of the signaling mechanisms that relate adipose tissue function to puberty. Protein-protein interaction network analysis identified 4 hub proteins that had the highest degrees of connection: PGK1, ALDH5A1, EEF2, and LDHB. Highly connected proteins are likely to influence the functions of all differentially abundant proteins identified, directly or indirectly.


Asunto(s)
Tejido Adiposo/fisiología , Bovinos/fisiología , Proteómica , Maduración Sexual/fisiología , Animales , Estrógenos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reproducción , Transcriptoma
4.
Andrology ; 6(4): 627-633, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29633574

RESUMEN

The association between sperm morphology characteristics and DNA conformation and integrity is still controversial. In bulls, major morphological sperm abnormalities have been associated with reduced fertility, and morphological assessment is used to provide an indication of potential fertility of the individual. Sperm DNA fragmentation and damage has a negative effect on embryo development and subsequently fertility, with bull spermatozoa generally displaying low levels of DNA damage and tight chromatin. However, sensitive methods for detecting chromatin damage may reveal associations with morphological defects. The objective was to determine whether morphological sperm abnormalities and variables expressing sperm DNA integrity and protamination are correlated in bulls, using the sperm chromatin structure assay (SCSA) and the sperm protamine deficiency assay (SPDA). Electroejaculated samples (n = 1009) from two-year-old tropically adapted bulls were split and fixed and submitted to microscopic sperm morphology assessment, and snap-frozen for sperm nuclear integrity assessments by SPDA and SCSA. For SPDA, the variables were defective (MCB) and deprotaminated (HCB), and for SCSA, the variables were DNA fragmentation index (DFI) and high DNA stainability (HDS). HCB correlated with DFI; τKen2  = 0.317 and HDS; 0.098, and MCB correlated with DFI; 0.183 (p < 0.001). The percentage of morphological normal spermatozoa was correlated negatively to DFI; τKen2  = -0.168, MCB; -0.116 and HCB; -0.137 (p < 0.001). HCB and DFI were both positively correlated to head defects, proximal droplets, and spermatogenic immaturity, but not to distal droplets, vacuoles, or diadems. Sperm DNA integrity and protamination, using the SCSA and SPDA, respectively, in bulls show associations with morphological parameters, particularly with head shape abnormalities and indicators of spermatogenic immaturity, including proximal droplets. The vacuoles and diadem defects were not correlated with sperm nuclear integrity, and hence, these are likely physiological features that may not directly affect sperm chromatin configuration.


Asunto(s)
Daño del ADN , Protaminas/análisis , Análisis de Semen/métodos , Espermatozoides/patología , Animales , Bovinos , Masculino
5.
J Anim Breed Genet ; 134(6): 484-492, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28994157

RESUMEN

We performed a genome-wide mapping for the age at first calving (AFC) with the goal of annotating candidate genes that regulate fertility in Nellore cattle. Phenotypic data from 762 cows and 777k SNP genotypes from 2,992 bulls and cows were used. Single nucleotide polymorphism (SNP) effects based on the single-step GBLUP methodology were blocked into adjacent windows of 1 Megabase (Mb) to explain the genetic variance. SNP windows explaining more than 0.40% of the AFC genetic variance were identified on chromosomes 2, 8, 9, 14, 16 and 17. From these windows, we identified 123 coding protein genes that were used to build gene networks. From the association study and derived gene networks, putative candidate genes (e.g., PAPPA, PREP, FER1L6, TPR, NMNAT1, ACAD10, PCMTD1, CRH, OPKR1, NPBWR1 and NCOA2) and transcription factors (TF) (STAT1, STAT3, RELA, E2F1 and EGR1) were strongly associated with female fertility (e.g., negative regulation of luteinizing hormone secretion, folliculogenesis and establishment of uterine receptivity). Evidence suggests that AFC inheritance is complex and controlled by multiple loci across the genome. As several windows explaining higher proportion of the genetic variance were identified on chromosome 14, further studies investigating the interaction across haplotypes to better understand the molecular architecture behind AFC in Nellore cattle should be undertaken.


Asunto(s)
Envejecimiento/fisiología , Bovinos/genética , Fertilidad , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Bovinos/fisiología , Femenino , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo
6.
J Anim Sci ; 95(9): 3809-3821, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28992001

RESUMEN

Inbreeding has the potential to negatively impact animal performance. Strategies to monitor and mitigate inbreeding depression require that it can be accurately estimated. Here, we used genomewide SNP data to explore 3 alternative measures of genomic inbreeding: the diagonal elements of the genomic relationship matrix (FGRM), the proportion of homozygous SNP (FHOM), and the proportion of the genome covered by runs of homozygosity (FROH). We used 2,111 Brahman (BR) and 2,550 Tropical Composite (TC) cattle with phenotypes recorded for 10 traits of relevance to tropical adaptation. We further explored 3 marker densities ranging from a high-density chip (729,068 SNP), a medium-density chip (71,726 SNP) specifically designed for cattle, and a low-density chip (18,860 SNP) associated with the measures of inbreeding. Measures of FGRM were highly correlated across the 3 SNP densities and negatively correlated with FHOM and FROH in the BR population. In both populations, there was a strong positive correlation for each measure of inbreeding across the 3 SNP panels. We found significant ( < 0.01) inbreeding depression for various traits, particularly when using the highest-density SNP chip in the BR population, where inbreeding was negatively associated with coat color and coat type such that inbred animals presented shorter, slicker, and lighter coats. Based on FGRM using the medium-density chip, we found that a 1% increase in inbreeding in the BR and TC populations was associated with a decrease of 0.514 and 0.579 kg BW, respectively, in yearlings. In the TC population, a 1% increase in FHOM was associated with a decrease in BCS of -0.636% ( < 0.001). The low-density chip, comprising SNP associated with inbreeding, captured genes, and regions with pleiotropic effects ( < 0.001). However, it did not improve our ability to identify inbreeding depression, relative to the use of higher-density panels. We conclude that where heterogeneous populations are present, such as in tropical environments where composite animals abound, measures of inbreeding that do not depend on allele frequencies, such as FHOM and FROH, are preferable for estimating genomic inbreeding. Finally, the sustainable intensification of livestock systems in tropical regions will rely on genetic safeguards to ensure that productivity is improved while also adapting animals to cope with climate change. The results of this study are a step toward achieving that goal.


Asunto(s)
Adaptación Fisiológica , Bovinos/genética , Genoma/genética , Depresión Endogámica , Polimorfismo de Nucleótido Simple , Animales , Bovinos/fisiología , Femenino , Frecuencia de los Genes , Genotipo , Homocigoto , Endogamia , Masculino , Fenotipo , Clima Tropical
7.
J Anim Sci ; 95(8): 3331-3345, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28805926

RESUMEN

Fertility traits are economically important in cattle breeding programs. Scrotal circumference (SC) measures are repeatable, easily obtained, highly heritable, and positively correlated with female fertility traits and sperm quality traits in males. A useful approach to summarize SC measures over time is using nonlinear models, which summarize specific measures of SC in a few parameters with biological interpretation. This approach facilitates the selection of bulls with larger SC and maturity index (K), that is, early maturing animals. Because SC is a sex-limited trait, identifying the underlying genomics of growth curve parameters will allow selection across both males and females. We reported the first multitrait genomewide association study (GWAS) of estimated growth curve parameters for SC data in Brahman cattle. Five widely used nonlinear models were tested to fit a total of 3,612 SC records, measured at 6, 12, 18, and 24 mo of age. The von Bertalanffy model, individually fitted for each animal, best fit this SC data. Parameter estimates SC at maturity (A) and K as well as SC at all ages were jointly analyzed in a GWAS to identify 1-Mb regions most strongly associated with each trait. Heritabilities were 0.25 for K and 0.32 for A and ranged from 0.51 to 0.72 for SC at 6 (SC6), 12 (SC12), 18 (SC18), and 24 mo of age (SC24). An overlapping window on chromosome 14 explaining around 0.8% of genetic variance for K, SC12, SC18, and SC24 was observed. The major positional candidate genes within 1 Mb upstream and downstream of this overlapping window were , , , and . Windows of 1 Mb explaining more than 0.4% of each trait on chromosomes 1, 3, 6, 7, 14, 17, 18, 24, 25, and 26 were identified. Pathways and net-work analyses were indicated through transcription factors playing a role on fertility traits: , , , , , , and . Further validation studies on larger populations or other breeds are required to validate these findings and to improve our understanding of the biology and complex genetic architecture of traits associated with scrotal growth and male fertility in cattle.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Escroto/crecimiento & desarrollo , Animales , Bovinos/crecimiento & desarrollo , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Masculino , Dinámicas no Lineales , Fenotipo
8.
J Anim Sci ; 95(2): 599-615, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28380590

RESUMEN

To understand genes, pathways, and networks related to puberty, we characterized the transcriptome of two tissues: the pituitary gland and ovaries. Samples were harvested from pre- and postpubertal Brahman heifers (same age group). Brahman heifers () are older at puberty compared with , a productivity issue. With RNA sequencing, we identified differentially expressed (DEx) genes and important transcription factors (TF) and predicted coexpression networks. The number of DEx genes detected in the pituitary gland was 284 ( < 0.05), and was the most DEx gene (fold change = 4.12, = 0.01). The gene promotes bone mineralization through transforming growth factor-ß (TGFß) signaling. Further studies of the link between bone mineralization and puberty could target . In ovaries, 3,871 genes were DEx ( < 0.05). Four highly DEx genes were noteworthy for their function: (a γ-aminobutyric acid [GABA] transporter), (), and () and its receptor . These genes had higher ovarian expression in postpubertal heifers. The GABA and its receptors and transporters were expressed in the ovaries of many mammals, suggesting a role for this pathway beyond the brain. The pathway has been known to influence the timing of puberty in rats, via modulation of GnRH. The effects of at the hypothalamus, pituitary gland, and ovaries have been documented. and its receptors are known factors in the release of GnRH, similar to and GABA, although their roles in ovarian tissue are less clear. Pathways previously related to puberty such as TGFß signaling ( = 6.71 × 10), Wnt signaling ( = 4.1 × 10), and peroxisome proliferator-activated receptor (PPAR) signaling ( = 4.84 × 10) were enriched in our data set. Seven genes were identified as key TF in both tissues: , , , , , , and a novel gene. An ovarian subnetwork created with TF and significant ovarian DEx genes revealed five zinc fingers as regulators: , , , , and . Recent work of hypothalamic gene expression also pointed to zinc fingers as TF for bovine puberty. Although some zinc fingers may be ubiquitously expressed, the identification of DEx genes in common across tissues points to key regulators of puberty. The hypothalamus and pituitary gland had eight DEx genes in common. The hypothalamus and ovaries had 89 DEx genes in common. The pituitary gland and ovaries had 48 DEx genes in common. Our study confirmed the complexity of puberty and suggested further investigation on genes that code zinc fingers.


Asunto(s)
Bovinos/genética , Ovario/fisiología , Hipófisis/fisiología , Maduración Sexual/genética , Transcriptoma , Animales , Bovinos/crecimiento & desarrollo , Bovinos/fisiología , Femenino , Expresión Génica , Hipotálamo/fisiología , Receptores de GABA/genética , Maduración Sexual/fisiología , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/genética
9.
Genet Mol Res ; 16(1)2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28340271

RESUMEN

Fertility traits, such as heifer pregnancy, are economically important in cattle production systems, and are therefore, used in genetic selection programs. The aim of this study was to identify single nucleotide polymorphisms (SNPs) using RNA-sequencing (RNA-Seq) data from ovary, uterus, endometrium, pituitary gland, hypothalamus, liver, longissimus dorsi muscle, and adipose tissue in 62 candidate genes associated with heifer puberty in cattle. RNA-Seq reads were assembled to the bovine reference genome (UMD 3.1.1) and analyzed in five cattle breeds; Brangus, Brahman, Nellore, Angus, and Holstein. Two approaches used the Brangus data for SNP discovery 1) pooling all samples, and 2) within each individual sample. These approaches revealed 1157 SNPs. These were compared with those identified in the pooled samples of the other breeds. Overall, 172 SNPs within 13 genes (CPNE5, FAM19A4, FOXN4, KLF1, LOC777593, MGC157266, NEBL, NRXN3, PEPT-1, PPP3CA, SCG5, TSG101, and TSHR) were concordant in the five breeds. Using Ensembl's Variant Effector Predictor, we determined that 12% of SNPs were in exons (71% synonymous, 29% nonsynonymous), 1% were in untranslated regions (UTRs), 86% were in introns, and 1% were in intergenic regions. Since these SNPs were discovered in RNA, the variants were predicted to be within exons or UTRs. Overall, 160 novel transcripts in 42 candidate genes and five novel genes overlapping five candidate genes were observed. In conclusion, 1157 SNPs were identified in 62 candidate genes associated with puberty in Brangus cattle, of which, 172 were concordant in the five cattle breeds. Novel transcripts and genes were also identified.


Asunto(s)
Pubertad/genética , Animales , Secuencia de Bases , Bovinos , Femenino , Fertilidad/genética , Genoma , Masculino , Polimorfismo de Nucleótido Simple , Embarazo , ARN/genética , Selección Genética , Análisis de Secuencia de ARN/métodos , Maduración Sexual
10.
J Anim Sci ; 94(10): 4096-4108, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27898866

RESUMEN

We introduce an innovative approach to lowering the overall cost of obtaining genomic EBV (GEBV) and encourage their use in commercial extensive herds of Brahman beef cattle. In our approach, the DNA genotyping of cow herds from 2 independent properties was performed using a high-density bovine SNP chip on DNA from pooled blood samples, grouped according to the result of a pregnancy test following their first and second joining opportunities. For the DNA pooling strategy, 15 to 28 blood samples from the same phenotype and contemporary group were allocated to pools. Across the 2 properties, a total of 183 pools were created representing 4,164 cows. In addition, blood samples from 309 bulls from the same properties were also taken. After genotyping and quality control, 74,584 remaining SNP were used for analyses. Pools and individual DNA samples were related by means of a "hybrid" genomic relationship matrix. The pooled genotyping analysis of 2 large and independent commercial populations of tropical beef cattle was able to recover significant and plausible associations between SNP and pregnancy test outcome. We discuss 24 SNP with significant association ( < 1.0 × 10) and mapped within 40 kb of an annotated gene. We have established a method to estimate the GEBV in young herd bulls for a trait that is currently unable to be predicted at all. In summary, our novel approach allowed us to conduct genomic analyses of fertility in 2 large commercial Brahman herds managed under extensive pastoral conditions.


Asunto(s)
Bovinos/genética , Bovinos/fisiología , Fertilidad , Animales , Cruzamiento , Bovinos/clasificación , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Embarazo , Carne Roja
11.
J Anim Sci ; 94(9): 3693-3702, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27898892

RESUMEN

Puberty onset is a developmental process influenced by genetic determinants, environment, and nutrition. Mutations and regulatory gene networks constitute the molecular basis for the genetic determinants of puberty onset. The emerging knowledge of these genetic determinants presents opportunities for innovation in the breeding of early pubertal cattle. This paper presents new data on hypothalamic gene expression related to puberty in (Brahman) in age- and weight-matched heifers. Six postpubertal heifers were compared with 6 prepubertal heifers using whole-genome RNA sequencing methodology for quantification of global gene expression in the hypothalamus. Five transcription factors (TF) with potential regulatory roles in the hypothalamus were identified in this experiment: , , , , and . These TF genes were significantly differentially expressed in the hypothalamus of postpubertal versus prepubertal heifers and were also identified as significant according to the applied regulatory impact factor metric ( < 0.05). Two of these 5 TF, and , were zinc fingers, belonging to a gene family previously reported to have a central regulatory role in mammalian puberty. The gene belongs to the family of homologues of Drosophila sine oculis () genes implicated in transcriptional regulation of gonadotrope gene expression. Tumor-related genes such as and are known to affect basic cellular processes that are relevant in both cancer and developmental processes. Mutations in were associated with puberty in humans. Mutations in these TF, together with other genetic determinants previously discovered, could be used in genomic selection to predict the genetic merit of cattle (i.e., the likelihood of the offspring presenting earlier than average puberty for Brahman). Knowledge of key mutations involved in genetic traits is an advantage for genomic prediction because it can increase its accuracy.


Asunto(s)
Bovinos/fisiología , Regulación de la Expresión Génica/fisiología , Hipotálamo/metabolismo , Maduración Sexual/fisiología , Factores de Transcripción/metabolismo , Animales , Peso Corporal/genética , Bovinos/genética , Femenino , Genoma , Maduración Sexual/genética , Factores de Transcripción/genética
12.
J Dairy Sci ; 99(4): 3056-3071, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26874426

RESUMEN

This study investigated effects of maternal overnutrition on gonadal development and pituitary-gonadal gene expression in cattle fetuses at mid- and late-gestation. Twenty-seven multiparous dry cows were fed either high (ad libitum, H) or moderate (M) intake of the same diet. Twelve cows from H (n=6) and M (n=6) intake carrying females fetuses were euthanized at 199 and 268d of gestation (DG; n=3 for H or M on each DG). Fifteen cows from H (n=6) and M intake (n=9) carrying male fetuses were euthanized at 139, 199, and 241 DG (n=2 for H and n=3 for M on each DG). Fetal gonads and pituitary gland were sampled for gene expression and histological analyses. Sex-specific responses to maternal intake were observed. Primordial and total follicle numbers were lower in fetal ovaries from H than in M intake cows. These results were the reverse for preantral and antral follicles. Volumetric proportion and diameter of seminiferous cord were lower in fetal testis of H than M intake cows. The expression level of FSHB was greater in pituitary gland of the female fetus from H compared with M intake cows, irrespective of DG, whereas LHB gene expression did not differ. In males, FSHB and LHB gene expression levels were similar between maternal intake groups. Fetal ovarian expression of P450 aromatase, StAR, BMPR2, TGFBR1, GDF9, FSHR, Bax, and CASP3 genes were higher in H than in M intake cows, irrespective of DG. Fetal testicular expression of StAR, HSD17B3, IGF1, IGF2, and IGF1R genes was higher in M than in H intake cows. The differences in gene expression for steroidogenesis, folliculogenesis, and apoptosis may explain the distinct pattern of follicular growth between offspring of M and H intake cows. By contrast, the lower volumetric proportion, diameter, and length of seminiferous cord may relate to decreased gene expression in fetal testis from H intake cows. In conclusion, maternal H intake seems to affect fetal ovarian follicular growth and number of follicles, which may affect the size of ovarian reserve in their offspring. In male fetus, maternal H intake seems to disturb testicular development and may have implications on sperm production. The underlying mechanism of differential gene expression and the effect on offspring reproductive potential should be the focus of further research, especially considering larger sample size, reducing the chance for type I errors.


Asunto(s)
Bovinos/fisiología , Regulación de la Expresión Génica/fisiología , Fenómenos Fisiologicos Nutricionales Maternos , Hipernutrición/veterinaria , Hipófisis/fisiología , Animales , Bovinos/genética , Bovinos/metabolismo , Dieta/veterinaria , Femenino , Desarrollo Fetal/fisiología , Masculino , Folículo Ovárico/crecimiento & desarrollo , Ovario/citología , Ovario/metabolismo , Hipernutrición/fisiopatología , Paridad , Reproducción , Testículo/metabolismo , Factores de Tiempo
13.
Anim Genet ; 47(1): 3-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26490440

RESUMEN

Genomic selection is becoming a standard tool in livestock breeding programs, particularly for traits that are hard to measure. Accuracy of genomic selection can be improved by increasing the quantity and quality of data and potentially by improving analytical methods. Adding genotypes and phenotypes from additional breeds or crosses often improves the accuracy of genomic predictions but requires specific methodology. A model was developed to incorporate breed composition estimated from genotypes into genomic selection models. This method was applied to age at puberty data in female beef cattle (as estimated from age at first observation of a corpus luteum) from a mix of Brahman and Tropical Composite beef cattle. In this dataset, the new model incorporating breed composition did not increase the accuracy of genomic selection. However, the breeding values exhibited slightly less bias (as assessed by deviation of regression of phenotype on genomic breeding values from the expected value of 1). Adding additional Brahman animals to the Tropical Composite analysis increased the accuracy of genomic predictions and did not affect the accuracy of the Brahman predictions.


Asunto(s)
Cruzamiento , Bovinos/genética , Selección Genética , Maduración Sexual/genética , Adaptación Fisiológica , Animales , Femenino , Frecuencia de los Genes , Genómica/métodos , Genotipo , Modelos Genéticos , Linaje , Fenotipo
14.
J Anim Sci ; 93(11): 5119-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26641032

RESUMEN

Fixed-time AI (FTAI) is a powerful tool for genetic improvement of extensively managed beef cattle. A genomewide association study (GWAS) was conducted to investigate genes and genetic markers associated with the outcome (pregnant or not pregnant) of FTAI in 614 commercial Brahman heifers genotyped for 18,895 SNP and imputed to 51,588 SNP. The likelihood of Brahman heifers becoming pregnant after hormonal treatment to synchronize ovulation followed by FTAI was influenced by the content of their genomes, as determined by a principal component analysis. The principal component analysis involved comparisons between the studied heifers and populations of known and ancestry. The heritability of FTAI outcome was = 0.18, which is higher than for most other reproductive outcome traits. The number of SNP associated with FTAI outcome was 101 ( < 0.001, false discovery rate = 0.53). Compared with all SNP tested, associated SNP had a tendency for highly divergent allelic frequencies between and . Associated SNP were located in nearly all chromosomes, a result that shows a complex genetic architecture that is typical of highly complex traits with low heritability. Considering this and previous GWAS that examined Brahman heifer puberty and postpartum anestrus interval, 3 genomic regions emerge as important for overall Brahman heifer fertility, which mapped to chromosomes 1, 7, and 9. Further analyses, including improved genome annotation, are required to elucidate the link between these regions and heifer fertility. Additional studies are needed to confirm SNP and gene associations reported herein and further elucidate the genetics of FTAI outcome. Future GWAS should target other Braham populations and additional cattle breeds with FTAI records, including breeds with higher ancestry.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo , Inseminación Artificial/veterinaria , Animales , Bovinos/fisiología , Femenino , Fertilidad/genética , Frecuencia de los Genes , Genoma , Genotipo , Periodo Posparto , Embarazo , Maduración Sexual/genética
15.
BMC Genomics ; 16: 872, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26510479

RESUMEN

BACKGROUND: Asian buffaloes (Bubalus bubalis) have an important socio-economic role. The majority of the population is situated in developing countries. Due to the scarce resources in these countries, very few species-specific biotechnology tools exist and a lot of cattle-derived technologies are applied to buffaloes. However, the application of cattle genomic tools to buffaloes is not straightforward and, as results suggested, despite genome sequences similarity the genetic polymorphisms are different. RESULTS: The first SNP chip genotyping platform designed specifically for buffaloes has recently become available. Herein, a genome-wide association study (GWAS) and gene network analysis carried out in buffaloes is presented. Target phenotypes were six milk production and four reproductive traits. GWAS identified SNP with significant associations and suggested candidate genes that were specific to each trait and also genes with pleiotropic effect, associated to multiple traits. CONCLUSIONS: Network predictions of interactions between these candidate genes may guide further molecular analyses in search of disruptive mutations, help select genes for functional experiments and evidence metabolism differences in comparison to cattle. The cattle SNP chip does not offer an optimal coverage of buffalo genome, thereafter the development of new buffalo-specific genetic technologies is warranted. An annotated reference genome would greatly facilitate genetic research, with potential impact to buffalo-based dairy production.


Asunto(s)
Búfalos/genética , Animales , Industria Lechera , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple/genética
16.
J Anim Sci ; 92(7): 2832-45, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24778332

RESUMEN

High intramuscular fat (IMF) awards price premiums to beef producers and is associated with meat quality and flavor. Studying gene interactions and pathways that affect IMF might unveil causative physiological mechanisms and inform genomic selection, leading to increased accuracy of predictions of breeding value. To study gene interactions and pathways, a gene network was derived from genetic markers associated with direct measures of IMF, other fat phenotypes, feedlot performance, and a number of meat quality traits relating to body conformation, development, and metabolism that might be plausibly expected to interact with IMF biology. Marker associations were inferred from genomewide association studies (GWAS) based on high density genotypes and 29 traits measured on 10,181 beef cattle animals from 3 breed types. For the network inference, SNP pairs were assessed according to the strength of the correlation between their additive association effects across the 29 traits. The co-association inferred network was formed by 2,434 genes connected by 28,283 edges. Topological network parameters suggested a highly cohesive network, in which the genes are strongly functionally interconnected. Pathway and network analyses pointed towards a trio of transcription factors (TF) as key regulators of carcass IMF: PPARGC1A, HNF4G, and FOXP3. Importantly, none of these genes would have been deemed as significantly associated with IMF from the GWAS. Instead, a total of 313 network genes show significant co-association with the 3 TF. These genes belong to a wide variety of biological functions, canonical pathways, and genetic networks linked to IMF-related phenotypes. In summary, our GWAS and network predictions are supported by the current literature and suggest a cooperative role for the 3 TF and other interacting genes including CAPN6, STC2, MAP2K4, EYA1, COPS5, XKR4, NR2E1, TOX, ATF1, ASPH, TGS1, and TTPA as modulators of carcass and meat quality traits in beef cattle.


Asunto(s)
Adiposidad/genética , Bovinos/genética , Factores de Transcripción Forkhead/genética , Redes Reguladoras de Genes/genética , Factor Nuclear 4 del Hepatocito/genética , Músculo Esquelético/fisiología , Factores de Transcripción/genética , Adiposidad/fisiología , Animales , Bovinos/anatomía & histología , Bovinos/fisiología , Factores de Transcripción Forkhead/fisiología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Factor Nuclear 4 del Hepatocito/fisiología , Carne/normas , Carácter Cuantitativo Heredable , Factores de Transcripción/fisiología
17.
Andrology ; 2(3): 370-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24634207

RESUMEN

The primary purpose of spermatozoa is to deliver the paternal DNA to the oocyte at fertilization. During the complex events of fertilization, if the spermatozoon penetrating the oocyte contains compromised or damaged sperm chromatin, the subsequent progression of embryogenesis and foetal development may be affected. Variation in sperm DNA damage and protamine content in ejaculated spermatozoa was reported in the cattle, with potential consequences to bull fertility. Protamines are sperm-specific nuclear proteins that are essential to packaging of the condensed paternal genome in spermatozoa. Sperm DNA damage is thought to be repaired during the process of protamination. This study investigates the potential correlation between sperm protamine content, sperm DNA damage and the subsequent relationships between sperm chromatin and commonly measured reproductive phenotypes. Bos indicus sperm samples (n = 133) were assessed by two flow cytometric methods: the sperm chromatin structure assay (SCSA) and an optimized sperm protamine deficiency assay (SPDA). To verify the SPDA assay for bovine sperm protamine content, samples collected from testis, caput and cauda epididymidis were analyzed. As expected, mature spermatozoa in the cauda epididymidis had higher protamine content when compared with sperm samples from testis and caput epididymidis (p < 0.01). The DNA fragmentation index (DFI), determined by SCSA, was positively correlated (r = 0.33 ± 0.08, p < 0.05) with the percentage of spermatozoa that showed low protamine content using SPDA. Also, DFI was negatively correlated (r = -0.21 ± 0.09, p < 0.05) with the percentage of spermatozoa with high protamine content. Larger scrotal circumference contributes to higher sperm protamine content and lower content of sperm DNA damage (p < 0.05). In conclusion, sperm protamine content and sperm DNA damage are closely associated. Protamine deficiency is likely to be one of the contributing factors to DNA instability and damage, which can affect bull fertility.


Asunto(s)
Fragmentación del ADN , Infertilidad Masculina/genética , Protaminas/metabolismo , Espermatozoides/citología , Animales , Bovinos , Cromatina/genética , Epidídimo/citología , Citometría de Flujo , Masculino , Protaminas/genética , Escroto/fisiología , Testículo/citología
18.
Anim Genet ; 44(6): 636-47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23909810

RESUMEN

A putative functional mutation (rs109231213) near PLAG1 (BTA14) associated with stature was studied in beef cattle. Data from 8199 Bos taurus, Bos indicus and Tropical Composite cattle were used to test the associations between rs109231213 and various phenotypes. Further, 23 496 SNPs located on BTA14 were tested for association with these phenotypes, both independently and fitted together with rs109231213. The C allele of rs109231213 significantly increased hip height, weight, net food intake, age at puberty in males and females and decreased IGF-I concentration in blood and fat depth. When rs109231213 was fitted as a fixed effect in the model, there was an overall reduction in associations between other SNPs and these traits but some SNPs remained associated (P < 10(-4) ). Frequency of the mutant C allele of rs109231213 differed among B. indicus (0.52), B. taurus (0.96) and Tropical Composite (0.68). Most chromosomes carrying the C allele had the same surrounding 10 SNP haplotype, probably because the C allele was introgressed into Brahman from B. taurus cattle. A region of reduced heterozygosity surrounds the C allele; this is small in B. taurus but 20 Mb long in Brahmans, indicating recent and strong selection for the mutant allele. Thus, the C allele appears to mark a mutation that has been selected almost to fixation in the B. taurus breeds studied here and introduced into Brahman cattle during grading up and selected to a frequency of 0.52 despite its negative effects on fertility.


Asunto(s)
Bovinos/genética , Proteínas de Unión al ADN/genética , Pleiotropía Genética/genética , Fenotipo , Selección Genética/genética , Dedos de Zinc/genética , Animales , Australia , Bovinos/crecimiento & desarrollo , Femenino , Estudios de Asociación Genética , Genética de Población , Genotipo , Haplotipos/genética , Desequilibrio de Ligamiento , Masculino , Carne/normas , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
19.
Andrology ; 1(4): 644-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23785023

RESUMEN

The fertility of young bulls impacts on reproduction rates, farm profit and the rate of genetic progress in beef herds. Cattle researchers and industry therefore routinely collect data on the reproductive performance of bulls. Genome-wide association studies were carried out to identify genomic regions and genes associated with reproductive traits measured during the pubertal development of Tropical Composite bulls, from 4 to 24 months of age. Data from 1 085 bulls were collected for seven traits: blood hormone levels of inhibin at 4 months (IN), luteinizing hormone following a gonadotropin releasing hormone challenge at 4 months (LH), insulin-like growth factor 1 at 6 months (IGF1), scrotal circumference at 12 months (SC), sperm motility at 18 months (MOT), percentage of normal spermatozoa at 24 months (PNS) and age at a scrotal circumference of 26 cm (AGE26, or pubertal age). Data from 729 068 single-nucleotide polymorphisms were used in the association analysis. Significant polymorphism associations were discovered for IN, IGF1, SC, AGE26 and PNS. Based on these associations, INHBE, INHBC and HELB are proposed as candidate genes for IN regulation. Polymorphisms associated with IGF1 mapped to the PLAG1 gene region, validating a reported quantitative trait locus on chromosome 14 for IGF1. The X chromosome contained most of the significant associations found for SC, AGE26 and PNS. These findings will contribute to the identification of diagnostic genetic markers and informed genomic selection strategies to assist breeding of cattle with improved fertility. Furthermore, this work provides evidence contributing to gene function annotation in the context of male fertility.


Asunto(s)
Fertilidad/genética , Estudio de Asociación del Genoma Completo/veterinaria , Inhibinas/genética , Factor I del Crecimiento Similar a la Insulina/genética , Hormona Luteinizante/genética , Polimorfismo de Nucleótido Simple , Motilidad Espermática/genética , Testículo/crecimiento & desarrollo , Animales , Biomarcadores/sangre , Bovinos , Frecuencia de los Genes , Genotipo , Inhibinas/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hormona Luteinizante/sangre , Masculino , Tamaño de los Órganos , Fenotipo , Análisis de Semen/veterinaria , Maduración Sexual/genética
20.
J Dairy Sci ; 96(4): 2283-2292, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462170

RESUMEN

The periparturient period presents major physiological challenges for the dairy cow. It is a period that is affected by metabolic stressors, major changes in endocrine status, and altered immune function, which together result in an increased risk of disease. Immunological, hematological, and metabolic profiles from the periparturient period of heifers (primipara) were compared with those of cows (pluripara) to test the hypothesis that at the time of calving they have qualitatively different peripheral blood profiles. Blood samples were collected from 22 Holstein-Friesian animals on 3 occasions: approximately 2 wk before calving, within 24h after calving, and approximately 2 wk after calving. Quantitative PCR was used to measure the expression of a selected set of cytokines and receptors by peripheral blood leukocytes. Additional analyses included hemoglobin concentration, red cell, platelet and white cell counts (total and differentiated), and clinical diagnostic biochemical profiles. Total leukocyte counts, neutrophils, and lymphocytes were higher in heifers than cows before calving and within 24h after calving. Alkaline phosphatase was consistently higher in heifers than cows and several significant differences were observed between the 2 groups with regards to cytokine and cytokine-receptor mRNA expression. The results warrant further investigation from the perspective of identifying risk factors for metabolic and parturient disease in dairy cattle.


Asunto(s)
Bovinos/sangre , Bovinos/inmunología , Citocinas/sangre , Leucocitos/química , Parto/sangre , Parto/inmunología , Animales , Recuento de Eritrocitos/veterinaria , Femenino , Hemoglobinas/análisis , Recuento de Leucocitos/veterinaria , Recuento de Linfocitos/veterinaria , Neutrófilos , Recuento de Plaquetas/veterinaria , Reacción en Cadena de la Polimerasa/veterinaria , Embarazo , ARN Mensajero/análisis , Receptores de Citocinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...