Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta Med ; 89(7): 700-708, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36889328

RESUMEN

Licarin A, a dihydrobenzofuranic neolignan presents in several medicinal plants and seeds of nutmeg, exhibits strong activity against protozoans responsible for Chagas disease and leishmaniasis. From biomimetic reactions by metalloporphyrin and Jacobsen catalysts, seven products were determined: four isomeric products yielded by epoxidation from licarin A, besides a new product yielded by a vicinal diol, a benzylic aldehyde, and an unsaturated aldehyde in the structure of the licarin A. The incubation with rat and human liver microsomes partially reproduced the biomimetic reactions by the production of the same epoxidized product of m/z 343 [M + H]+. In vivo acute toxicity assays of licarin A suggested liver toxicity based on biomarker enzymatic changes. However, microscopic analysis of tissues sections did not show any tissue damage as indicative of toxicity after 14 days of exposure. New metabolic pathways of the licarin A were identified after in vitro biomimetic oxidation reaction and in vitro metabolism by rat or human liver microsomes.


Asunto(s)
Lignanos , Metaloporfirinas , Ratas , Humanos , Animales , Biomimética , Oxidación-Reducción , Lignanos/toxicidad , Metaloporfirinas/metabolismo , Microsomas Hepáticos/metabolismo
2.
Talanta ; 116: 743-52, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24148469

RESUMEN

We developed a capillary electrophoresis (CE) and dispersive liquid-liquid microextraction (DLLME) method to stereoselectively analyze hydroxyzine (HZ) and cetirizine (CTZ) in liquid culture media. The CE analyses were performed on an uncoated fused-silica capillary; 50mmolL(-1) sodium borate buffer (pH 9.0) containing 0.8% (w/v) S-ß-CD was used as the background electrolyte. The applied voltage and temperature were +6 kV and 15 °C, respectively, and the UV detector was set to 214 nm. Chloroform (300 µL) and ethanol (400 µL) were used as the extraction and disperser solvents, respectively, for the DLLME. Following the formation of a cloudy solution, the samples were subjected to vortex agitation at 2000 rpm for 30s and to centrifugation at 3000 rpm for 5 min. The recoveries ranged from 87.4 to 91.7%. The method was linear over a concentration range of 250-12,500 ng mL(-1) for each HZ enantiomer (r>0.998) and 125-6250 ng mL(-1) for each CTZ enantiomer (r>0.998). The limits of quantification were 125 and 250 ng mL(-1) for CTZ and HZ, respectively. Among the six fungi studied, three species were able to convert HZ to CTZ enantioselectively, particularly the fungus Cunninghamella elegans ATCC 10028B, which converted 19% of (S)-HZ to (S)-CTZ with 65% enantiomeric excess.


Asunto(s)
Antialérgicos/aislamiento & purificación , Cetirizina/aislamiento & purificación , Cunninghamella/metabolismo , Hidroxizina/aislamiento & purificación , Microextracción en Fase Líquida/métodos , Antialérgicos/química , Antialérgicos/metabolismo , Biotransformación , Cetirizina/química , Cetirizina/metabolismo , Cloroformo/química , Medios de Cultivo , Electroforesis Capilar , Etanol/química , Concentración de Iones de Hidrógeno , Hidroxizina/química , Hidroxizina/metabolismo , Solventes/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...