Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(4): 2851-2864, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29327004

RESUMEN

The excited state dynamics of two quadrupolar polyaromatic N-methylpyridinium cations have been fully investigated in order to acquire detailed information on their photo-induced behavior. The two molecules are symmetric push-pull compounds having a D-π-A+-π-D motif, with the same electron-acceptor central unit (A = N-methylpyridinium) and two distinctive electron-donor polyaromatic side groups (D), namely naphthyl and pyrenyl substituents. Both molecules undergo charge transfer during the absorption, as revealed by a significant solvatochromism exhibited with solvent polarity, but the fate of their excited state was found to be markedly different. The careful analysis of the data gathered from femtosecond-resolved fluorescence up-conversion and transient absorption experiments, supported by DFT quantum mechanical calculations and temperature-dependent stationary measurements, shows the leading role of intramolecular charge transfer, assisted by symmetry breaking, in the pyrenyl derivative and that of rotamer interconversion in the naphthtyl one. Both excited state processes are controlled by the viscosity rather than polarity of the solvent, and they occur during inertial solvation in low-viscous media and lengthening up to tens of picoseconds in highly viscous solvents.

2.
Phys Chem Chem Phys ; 19(7): 5262-5272, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28149989

RESUMEN

The ground and excited state properties of 1-methyl-2-[(E)-2-(2-naphthyl) vinyl]pyridinium iodide have been investigated in solvents of different polarities and viscosities using stationary and ultrafast time resolved spectroscopic techniques supported by density functional theory (DFT) calculations. The investigated compound shows an important negative solvatochromism, which serves as evidence of a certain push-pull character exhibited upon photoexcitation, but the most remarkable feature is an extremely large absorption spectrum, as opposed to the narrower emission band. Interestingly, both experiments and calculations have revealed a conformational disorder in the ground state between four quasi-isoenergetic rotamers which contribute to the broad absorption spectrum. These equilibria are shifted towards one prevailing species in the excited state, pointing out an unexpected and efficient rotamer interconversion during the S1 lifetime, manifestly against the non-equilibrated excited rotamers principle. The rotamer interconversion has been found to be very fast and only hindered in a rigid matrix at low temperatures.

3.
SAR QSAR Environ Res ; 27(3): 221-244, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30950653

RESUMEN

Five in silico principal properties (PPs) for 218 heterocyclic cations and four PPs for 38 organic and inorganic anionic counterparts of ionic liquids (ILs) were derived by the VolSurf+ approach. VolSurf+ physicochemical descriptors take into account several cationic structural features of ILs such as heterocyclic aromatic and non-aromatic cationic cores, alkyl chain length, presence of oxygen atoms in the substituents as well as the properties of a wide variety of inorganic and organic anions. Combination of these cation and anion PPs can provide descriptors for over 8000 ILs, thus allowing the development of QSPR models for IL cytotoxicity (IPC-81 rat cell line) and enzyme toxicity (acetylcholinesterase inhibition). The adoption of a Partial Least Squares approach, relating PPs and toxicities, provided affordable predictions for ILs in both learning and external validation sets, implying the possibility to extend the predictive model to a set of 520 ILs. This allows us to establish priorities in selecting ILs for experimental hazard assessment as required by the REACH regulation.

4.
Phys Chem Chem Phys ; 17(32): 20981-9, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26213993

RESUMEN

A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle.


Asunto(s)
Electrones , Compuestos de Piridinio/química , Estructura Molecular , Compuestos de Piridinio/síntesis química , Teoría Cuántica , Espectrometría de Fluorescencia
5.
Phys Chem Chem Phys ; 17(3): 1877-82, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25474173

RESUMEN

We report here experimental evidence of dual emission in a cationic push-pull system (bearing a methyl pyridinium group as an electron acceptor and a diphenylamino group as an electron donor), which shows negative solvatochromism. An intriguing blue shift and enlargement of the fluorescence band upon increasing the solvent polarity have suggested a possible contribution of an upper excited state to the stationary emission. Ultrafast transient absorption has indeed revealed the presence of an intermediate transient species in some solvents. The investigation of the fluorescence properties at low temperatures and in the rigid matrix has given a clear indication of this additional emission at shorter wavelengths. Femtosecond up-conversion measurements have shown interesting rise-decay dynamics in the kinetics and two well distinguished emission bands characterized by different deactivations. A single isoemissive point in the time-resolved area-normalized spectra has unambiguously pointed out the presence of two consecutive emissive species: the locally excited and the intramolecular charge transfer excited states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA