Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Rev Vis Sci ; 10(1): 171-198, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39292550

RESUMEN

This article reviews nearly 60 years of solid-state image sensor evolution and identifies potential new frontiers in the field. From early work in the 1960s, through the development of charge-coupled device image sensors, to the complementary metal oxide semiconductor image sensors now ubiquitous in our lives, we discuss highlights in the evolutionary chain. New frontiers, such as 3D stacked technology, photon-counting technology, and others, are briefly discussed.

2.
Nat Commun ; 15(1): 4480, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802338

RESUMEN

High-speed wide-field fluorescence microscopy has the potential to capture biological processes with exceptional spatiotemporal resolution. However, conventional cameras suffer from low signal-to-noise ratio at high frame rates, limiting their ability to detect faint fluorescent events. Here, we introduce an image sensor where each pixel has individually programmable sampling speed and phase, so that pixels can be arranged to simultaneously sample at high speed with a high signal-to-noise ratio. In high-speed voltage imaging experiments, our image sensor significantly increases the output signal-to-noise ratio compared to a low-noise scientific CMOS camera (~2-3 folds). This signal-to-noise ratio gain enables the detection of weak neuronal action potentials and subthreshold activities missed by the standard scientific CMOS cameras. Our camera with flexible pixel exposure configurations offers versatile sampling strategies to improve signal quality in various experimental conditions.


Asunto(s)
Microscopía Fluorescente , Relación Señal-Ruido , Microscopía Fluorescente/métodos , Microscopía Fluorescente/instrumentación , Animales , Neuronas/fisiología , Potenciales de Acción/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Humanos
3.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425952

RESUMEN

High-speed widefield fluorescence microscopy has the potential to capture biological processes with exceptional spatiotemporal resolution. However, conventional cameras suffer from low signal-to-noise ratio (SNR) at high frame rates, limiting their ability to detect faint fluorescent events. Here we introduce an image sensor where each pixel has individually programmable sampling speed and phase, so that pixels can be arranged to simultaneously sample at high speed with a high SNR. In high-speed voltage imaging experiments, our image sensor significantly increases the output SNR compared to a low-noise scientific CMOS camera (~2-3 folds). This SNR gain enables the detection of weak neuronal action potentials and subthreshold activities missed by the standard scientific CMOS cameras. Our proposed camera with flexible pixel exposure configurations offers versatile sampling strategies to improve signal quality in various experimental conditions.

4.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514650

RESUMEN

This paper presents a novel ultra-high speed, high conversion-gain, low noise CMOS image sensor (CIS) based on charge-sweep transfer gates implemented in a standard 180 nm CIS process. Through the optimization of the photodiode geometry and the utilization of charge-sweep transfer gates, the proposed pixels achieve a charge transfer time of less than 10 ns without requiring any process modifications. Moreover, the gate structure significantly reduces the floating diffusion capacitance, resulting in an increased conversion gain of 183 µV/e-. This advancement enables the image sensor to achieve the lowest reported noise of 5.1 e- rms. To demonstrate the effectiveness of both optimizations, a proof-of-concept CMOS image sensor is designed, taped-out and characterized.

5.
Sensors (Basel) ; 22(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35408194

RESUMEN

A new readout architecture for single-bit quanta image sensor (QIS) consisting of a capacitive transimpedance amplifier (CTIA) before a 1-bit quantizer to improve the threshold uniformity of the readout cluster is proposed in this paper. The 1-bit quantizer in the previous single-bit QIS had significant threshold non-uniformity likely caused by the fluctuation of the common-mode voltage of the jot output. To guarantee the stability of the common-mode voltage of input signals fed to the 1-bit quantizer, the CTIA is added before the 1-bit quantizer. A pipeline operation mode is also proposed so the CTIA and 1-bit ADC can work at the same time, thereby reducing the CTIA power consumption. A 2048 × 1024 high-speed test chip was implemented with 45 nm/65 nm stacked backside illuminated (BSI) CMOS image sensor (CIS) process and tested. According to the measured D-log-H results, a good threshold uniformity in the range of 0.3 to 0.8 e- for all readout clusters is demonstrated at 500 frame per second (fps) equivalent timing with 68 mW power consumption.

6.
Sensors (Basel) ; 21(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34833642

RESUMEN

Simulation results are presented that explore an innovative, new design for X-ray detection in the 20-50 keV range that is an alternative to traditional direct and indirect detection methods. Typical indirect detection using a scintillator must trade-off between absorption efficiency and spatial resolution. With a high-Z layer that down-converts incident photons on top of a silicon detector, this design has increased absorption efficiency without sacrificing spatial resolution. Simulation results elucidate the relationship between the thickness of each layer and the number of photoelectrons generated. Further, the physics behind the production of electron-hole pairs in the silicon layer is studied via a second model to shed more light on the detector's functionality. Together, the two models provide a greater understanding of this detector and reveal the potential of this novel form of X-ray detection.

7.
Rev Sci Instrum ; 92(4): 043708, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243488

RESUMEN

The continuing improvement in quantum efficiency (above 90% for single visible photons), reduction in noise (below 1 electron per pixel), and shrink in pixel pitch (less than 1 µm) enable billion-pixel x-ray cameras (BiPC-X) based on commercial complementary metal-oxide-semiconductor (CMOS) imaging sensors. We describe BiPC-X designs and prototype construction based on flexible tiling of commercial CMOS imaging sensors with millions of pixels. Device models are given for direct detection of low energy x rays (<10 keV) and indirect detection of higher energies using scintillators. Modified Birks's law is proposed for light yield non-proportionality in scintillators as a function of x-ray energy. Single x-ray sensitivity and spatial resolution have been validated experimentally using a laboratory x-ray source and the Argonne Advanced Photon Source. Possible applications include wide field-of-view or large x-ray aperture measurements in high-temperature plasmas, the state-of-the-art synchrotron, x-ray free electron laser, and pulsed power facilities.

8.
Sensors (Basel) ; 19(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835753

RESUMEN

This work fits the measured in-pixel source-follower noise in a CMOS Quanta Image Sensor (QIS) prototype chip using physics-based 1/f noise models, rather than the widely-used fitting model for analog designers. This paper discusses the different origins of 1/f noise in QIS devices and includes correlated double sampling (CDS). The modelling results based on the Hooge mobility fluctuation, which uses one adjustable parameter, match the experimental measurements, including the variation in noise from room temperature to -70 °C. This work provides useful information for the implementation of QIS in scientific applications and suggests that even lower read noise is attainable by further cooling and may be applicable to other CMOS analog circuits and CMOS image sensors.

9.
Opt Express ; 25(22): 26508-26518, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29092140

RESUMEN

Searching for innovative approaches to detect single photons remains at the center of science and technology for decades. This paper proposes a zero transit-time, non-avalanche quantum capacitive photodetector to register single photons. In this detector, the absorption of a single photon changes the wave function of a single electron trapped in a quantum dot (QD), leading to a charge density redistribution nearby. This redistribution translates into a voltage signal through capacitive coupling between the QD and the measurement probe. Using InAs QD/AlAs barrier as a model system, the simulation shows that the output signal reaches ~4 mV per absorbed photon, promising for high-sensitivity, ps single-photon detection.

10.
Sensors (Basel) ; 16(8)2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27517926

RESUMEN

The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or "cubicle" of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as "jots" and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e- r.m.s. and conversion gain as high as 420 µV/e-, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture.

11.
Sensors (Basel) ; 16(7)2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27367698

RESUMEN

A new quantum random number generation method is proposed. The method is based on the randomness of the photon emission process and the single photon counting capability of the Quanta Image Sensor (QIS). It has the potential to generate high-quality random numbers with remarkable data output rate. In this paper, the principle of photon statistics and theory of entropy are discussed. Sample data were collected with QIS jot device, and its randomness quality was analyzed. The randomness assessment method and results are discussed.

12.
J Opt Soc Am A Opt Image Sci Vis ; 33(6): 1147-54, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27409443

RESUMEN

Research efforts in linear polarization imaging have largely targeted the development of novel polarizing filters with improved performance and the monolithic integration of image sensors and polarization filter arrays. However, as pixel sizes in CMOS image sensors continue to decrease, the same limitations that have an impact on color and monochrome CMOS image sensors will undoubtedly affect polarization imagers. Issues of low signal capacity and dynamic range in small pixels will severely limit the useful polarization information that can be obtained. In this paper, we propose to leverage the benefits of the relatively new Quanta image sensor (QIS) concept to mitigate the anticipated limitations of linear polarization imaging as pixel sizes decrease. We address, by theoretical calculation and simulation, implementation issues such as alignment of polarization filters over extremely small pixels used in the QIS concept and polarization image formation from single-bit output of such pixels. We also present design innovations aimed at exploiting the benefits of this new imaging concept for simultaneous color and linear polarization imaging.

13.
J Opt Soc Am A Opt Image Sci Vis ; 32(1): 28-34, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26366487

RESUMEN

Digital image sensor outputs usually must be transformed to suit the human visual system. This color correction amplifies noise, thus reducing the signal-to-noise ratio (SNR) of the image. In subdiffraction-limit (SDL) pixels, where optical and carrier cross talk can be substantial, this problem can become significant when conventional color filter arrays (CFAs) such as the Bayer patterns (RGB and CMY) are used. We present the design and analysis of new color filter array patterns for improving the color error and SNR deterioration caused by cross talk in these SDL pixels. We demonstrate an improvement in the color reproduction accuracy and SNR in high cross-talk conditions. Finally, we investigate the trade-off between color accuracy and SNR for the different CFA patterns.

14.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 11): o2207, 2008 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21581065

RESUMEN

In the title compound, C(12)H(8)F(2)O(2)S, which is a precursor of functionalised poly(aryl-ene ether sulfone) polymers, the dihedral angle between the aromatic ring planes is 84.43 (8)°. In the crystal structure, aromatic π-π stacking [centroid-centroid separations = 3.808 (3) and 3.867 (3) Å] helps to establish the packing. A short C-H⋯F contact also occurs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA