Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 340: 122299, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858022

RESUMEN

As integral parts of fuel cells, polymer electrolyte membranes (PEM) facilitate the conversion of hydrogen's chemical energy into electricity and water. Unfortunately, commercial PEMs are associated with high costs, limited durability, variable electrochemical performance and are based on perfluorinated polymers that persist in the environment. Nanocellulose-based PEMs have emerged as alternative options given their renewability, thermal and mechanical stability, low-cost, and hydrophilicity. These PEMs take advantage of the anionic nature of most nanocelluloses, as well as their facile modification with conductive functional groups, for instance, to endow ionic and electron conductivity. Herein, we incorporated for the first time two nanocellulose types, TEMPO-oxidized and sulfonated, to produce a fully bio-based PEM and studied their contribution separately and when mixed in a PEM matrix. Sulfonated nanocellulose-based PEMs are shown to perform similarly to commercial and bio-based membranes, demonstrating good thermal-oxidative stability (up to 190 °C), mechanical robustness (Young's modulus as high as 1.15 GPa and storage moduli >13 GPa), and high moisture-uptake capacity (ca. 6330 % after 48 h). The introduced nanocellulose membranes are shown as promising materials for proton-exchange material applications, as required in fuel cells.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38916653

RESUMEN

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.

3.
ACS Appl Eng Mater ; 2(5): 1288-1297, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38808266

RESUMEN

A superhydrophobic textile coating, applied by using a home drying machine, was developed as an aqueous dispersion of waxes that were extracted from recycled Christmas trees. Because the bulk extraction of waxes yielded a mixture of hydrophobic and hydrophilic compounds, a purification process was tested to determine if removing noncrystallizing wax components would enhance the performance of the coating. The performances of coatings created from the crude and enriched extracts were compared, and no significant difference in hydrophobicity was found. Moreover, although the enriched coating was slightly more breathable, there was not enough of an improvement to justify the additional purification steps, rendering the crude extract more industrially viable. Overall, Christmas tree waxes are readily sourced and are capable of producing superhydrophobic coatings without the need for a costly purification step.

4.
PLoS One ; 19(3): e0299810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38513160

RESUMEN

Stomatal movement, initiated by specialized epidermal cells known as guard cells (GCs), plays a pivotal role in plant gas exchange and water use efficiency. Despite protocols existing for isolating GCs through proplasting for carrying out biochemical, physiological, and molecular studies, protocals for isolating GCs with their cell walls still intact have been lacking in the literature. In this paper, we introduce a method for the isolation of complete GCs from Vicia faba and show their membrane to remain impermeable through propidium iodide staining. This methodology enables further in-depth analyses into the cell wall composition of GCs, facilitating our understanding of structure-function relationship governing reversible actuation within cells.


Asunto(s)
Fabaceae , Vicia faba , Vicia faba/metabolismo , Pared Celular , Microtúbulos/metabolismo
5.
Int J Biol Macromol ; 266(Pt 1): 131212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552693

RESUMEN

In this study, we successfully developed a screen-printed pH-responsive intelligent label using low molecular weight chitosan grafted with phenol red (LCPR) as a colorant for screen printing ink. The LCPR was synthesized via a Mannich reaction, and its successful grafting was confirmed through FT-IR, UV-vis, and NMR spectroscopy. The LCPR exhibited lower crystallinity and thermal stability compared to low molecular weight chitosan (LC) and demonstrated zwitterionic behavior. To create intelligent labels, the LCPR-based ink was efficiently printed on cotton substrates with high resolution. The label exhibited remarkable sensitivity to buffer pH solutions and ammonia gas, leading to distinctive color changes from orange to red to purple. Additionally, the label showed excellent reversibility, storage stability, and leaching resistance to different food simulant solutions. The label was utilized to monitor shrimp freshness, successfully detecting a noticeable color shift upon spoilage. These findings highlight the significant potential of the LCPR-based label as an intelligent food packaging solution, offering pH-responsiveness and color stability for qualitative freshness detection of protein-rich food.


Asunto(s)
Quitosano , Embalaje de Alimentos , Peso Molecular , Fenolsulfonftaleína , Quitosano/química , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Fenolsulfonftaleína/química , Animales
6.
Small ; 20(24): e2309459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38519858

RESUMEN

Redox flow batteries (RFBs) are increasingly being considered for a wide range of energy storage applications, and such devices rely on proton exchange membranes (PEMs) to function. PEMs are high-cost, petroleum-derived polymers that often possess limited durability, variable electrochemical performance, and are linked to discharge of perfluorinated compounds. Alternative PEMs that utilize biobased materials, including lignin and sulfonated lignin (SL), low-cost byproducts of the wood pulping process, have struggled to balance electrochemical performance with dimensional stability. Herein, SL nanoparticles are demonstrated for use as a nature-derived, ion-conducting PEM material. SL nanoparticles (NanoSLs) can be synthesized for increased surface area, uniformity, and miscibility compared with macrosized lignin, improving proton conductivity. After addition of polyvinyl alcohol (PVOH) as a structural backbone, membranes with the highest NanoSL concentration demonstrated an ion exchange capacity of 1.26 meq g-1, above that of the commercial PEM Nafion 112 (0.98 meq g-1), along with a conductivity of 80.4 mS cm-1 in situ, above that of many biocomposite PEMs, and a coulombic efficiency (CE), energy efficiency (EE) and voltage efficiency (VE) of 91%, 68% and 78%, respectively at 20 mA cm-2. These nanocomposite PEMs demonstrate the potential for valorization of forest biomass waste streams for high value clean energy applications.

7.
ACS Sustain Chem Eng ; 12(1): 490-500, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38213545

RESUMEN

The engineering thermoplastics industry has largely limited the use of natural fiber reinforcements due to their susceptibility to low-onset thermal degradation and water absorption. Therefore, in order to utilize these economically viable and environmentally friendly materials effectively through common composite fabrication methods such as hot pressing, safeguarding them from thermal degradation becomes essential. This work presents a viable industrially technique called sequential ball milling for processing unbleached softwood kraft pulp fibers (PF) with an engineering thermoplastics polyamide 6 (PA6) with high melting temperatures (>220 °C). An additional eco-friendly modification step that employs ball milling and cellulose nanocrystal (CNC) has been implemented in this study to enhance the mechanical properties of the composites. Special attention is given to fine-tuning key variables, such as milling duration and PF particle size, to produce optimal composites. Leveraging the ability of sequential ball milling to evenly distribute pulp fibers into PA6, a 160% increase in Young's modulus was achieved with the incorporation of 30 wt % PF. Importantly, the introduction of a 5 wt % CNC modifying agent elevated Young's modulus to 4.3 GPa, marking a 187% improvement over unmodified PA6. Diverse techniques, including rheological analyses, thermomechanical evaluations, morphological examinations, and assessments of moisture absorption, were utilized to validate the efficiency of the suggested processing approach and the modification phase.

8.
Soft Matter ; 19(36): 7020-7032, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37676239

RESUMEN

Novel superhydrophobic coatings, that are both biodegradable and biosourced, have the potential to revolutionize the water-repellent coating industry. Here, water-repellent coatings were prepared from commercially unavailable plant waxes, isolated using solvent extraction and characterized using DSC, GC-MS and DLS. In the first stage, a plant survey was conducted to identify an ideal plant source for the final spray, in which Whatman filter paper was submerged in a wax-solvent solution with recrystallization occurring upon air-drying. In the second stage, aqueous, PFC-free wax dispersions were prepared, coated onto textiles (cotton and polyester), and heat-treated with a home drying machine to allow for the spreading and recrystallization of the waxes. In both stages, SEM visualization verified the coating's morphology, and contact angle measurements showed them to be superhydrophobic. It was concluded that, using less coating material than commercial coatings, high-performing petroleum-free coatings could be made and applied onto textiles of various polarities.

9.
Angew Chem Int Ed Engl ; 62(44): e202308822, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37466460

RESUMEN

Combustion is often difficult to spatially direct or tune associated kinetics-hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A 'surface-then-core' order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2 ) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and µm-diameter tubes from appropriately sized fibers.

10.
ACS Sustain Chem Eng ; 11(29): 10727-10736, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37502772

RESUMEN

Fiber cement reinforced with pulp fibers is one of the key drivers for the decarbonization of nonstructural building materials, where the inclusion of sustainable pulp fibers at high proportions (i.e., > 8 wt %) renders poor workability of fiber-cement slurry with a concomitant loss in mechanical strength. Petrochemical-derived superplasticizers, i.e., polycarboxylates (PCEs), are predominantly used in fiber cement (including cement mortars) because they dramatically improve (content <0.5 wt %) the slurry rheology but reduce the rate of hydration and weaken the strength of the cured composite. Thus, it is crucial to explore renewable and bio-based superplasticizers devoid of any negative traits (if possible) of the conventional PCEs. In this study, we examined wood-derived cellulose nanocrystals (CNCs) as a multifunctional additive in fiber cement (bleached pulp fiber content: 8 wt %). In fiber cement, variation of the content (0.02-4 wt %) of CNCs resulted in improvement in the shear thinning behavior of the fiber-cement slurry and thereafter increased the hydration kinetics at high CNC contents (2-4 wt %). Notably, the flexural strength of the composite also exhibited improvement upon the addition of CNCs; the maximum strength was observed at 4 wt % of CNCs. Overall, the beneficial roles of CNCs afforded >10 wt % (in-total) bio-based content in fiber cement without compromising the mechanical strength and curing time (compared to PCEs); hence, the findings of this study could unravel new avenues in interface engineering of cement composites leveraging the multifunctional features of biomaterials, thus enhancing sustainability.

11.
Sci Rep ; 13(1): 8385, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225861

RESUMEN

Pulp fibre reinforced cement (fibre cement) has the potential to become a forerunner in mitigating the carbon dioxide (CO2) footprint of non-structural materials for residential and commercial structures. However, one of the significant bottlenecks in fibre cement is its poor chemical stability in the alkaline cement matrix. To date, probing the health of pulp fibre in cement is lengthy and laborious, requiring mechanical and chemical separations. In this study, we have demonstrated that it is possible to understand the chemical interactions at the fibre-cement interfaces by tracking lignin in a solid state without using any additional chemicals. For the first time, multidimensional fluorometry is employed for the rapid assessment of the structural change (degradation) of lignin in fibre cement as an indicator of pulp fibre health; providing an excellent platform for the germination of resilient fibre cement with high content of natural lignocellulosic fibre.

12.
Carbohydr Polym ; 314: 120932, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173030

RESUMEN

Bringing biobased nanomaterials into polymer manufacturing is essential to enhance polymers' properties and address the challenges posed by plastic waste. Using polymers such as polyamide 6 (PA6) in advanced industries, e.g., automotive sector, has been impeded as a direct consequence of their inability to meet the required mechanical properties. Herein, we utilize bio-based cellulose nanofibers (CNFs) to enhance the properties of PA6 by green processing, with no footprint on the environment. We address the issue of the dispersion of the nanofillers in polymeric matrices and demonstrate direct milling (cryo-milling and planetary ball milling) to facilitate a thorough integration of the components. Nanocomposites incorporating 1.0 wt% CNF, processed by pre-milling followed by compression molding, are shown to possess a storage modulus of 3.8 ± 0.2 GPa, Young's modulus of 2.9 ± 0.2 GPa, and ultimate tensile strength of 63 ± 3 MPa (all measured at room temperature). To show the superiority of direct milling in achieving these properties, other frequent approaches used to disperse CNF in polymers, such as solvent casting and hand mixing, are meticulously investigated and compared for the performance of their resulting specimens. The ball-milling method is demonstrated to provide PA6-CNF nanocomposites with excellent performance, better than solvent casting, with no associated environmental concerns.

13.
Materials (Basel) ; 15(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591586

RESUMEN

Carbonated hydroxyapatite (CHAp) adsorbent material was prepared from Achatina achatina snail shells and phosphate-containing solution using a wet chemical deposition method. The CHAp adsorbent material was investigated to adsorb aqua Fe(II) complex; [Fe(H2O)6]2+ from simulated iron contaminated water for potential iron remediation application. The CHAp was characterized before and after adsorption using infrared (IR) and Raman spectroscopy. The IR and the Raman data revealed that the carbonate functional groups of the CHAp adsorbent material through asymmetric orientation in water bonded strongly to the aqua Fe(II) complex adsorbate. The adsorption behaviour of the adsorbate onto the CHAp adsorbent correlated well to pseudo-second-order kinetics model, non-linear Langmuir and Freundlich model at room temperature of a concentration (20-100 mg L-1) and contact time of 180 min. The Langmuir model estimated the maximum adsorption capacity to be 45.87 mg g-1 whereas Freundlich model indicated an S-type isotherm curvature which supported the spectroscopy revelation.

14.
Carbohydr Polym ; 286: 119283, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337505

RESUMEN

A novel nanocomposite comprised of cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNFs) was prepared through solution casting to evaluate potential improvements of the mechanical performance compared to individual reinforcements alone. Such materials can be implemented as mechanical reinforcements in polymer composites, especially when less weight is desired. Dissipative particle dynamics (DPD) simulations, in combination with polarized light microscopy and atomic force microscopy, were analyzed to evaluate the morphology of these combined cellulose nanomaterial (CNM) films. Our results indicate that TOCNFs provide enhanced translational mobility to CNCs which become incorporated near the crystalline domains of TOCNFs. This mobility enables CNCs to increase the rigidity of the network without sacrificing elongation and toughness. The combination of these materials provides improved ultimate tensile strength and elongation without sacrificing the Young's modulus. Therefore, a combination of these materials can be used to develop nanocomposites with enhanced mechanical properties.

15.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641196

RESUMEN

This work reports on the use of low-cost pineapple leaf fiber (PALF) as an alternative reinforcing material to the established, commonly used material for prosthetic socket fabrication which is carbon-fiber-reinforced composite (CFRC) due to the high strength and stiffness of carbon fiber. However, the low range of loads exerted on a typical prosthetic socket (PS) in practice suggests that the use of CFRC may not be appropriate because of the high material stiffness which can be detrimental to socket-limb load transfer. Additionally, the high cost of carbon fiber avails opportunities to look for an alternative material as a reinforcement for composite PS development. PALF/Methyl Methacrylate-based (MMA) composites with 0°, 45° and 90° fiber orientations were made with 5-50 v/v fiber volume fractions. The PALF/MMA composites were subjected to a three-point flexural test to determine the effect of fiber volume fraction and fiber orientation on the flexural properties of the composite. The results showed that 40% v/v PALF/MMA composite with 0° fiber orientation recorded the highest flexural strength (50 MPa) and stiffness (1692 MPa). Considering the average load range exerted on PS, the flexural performance of the novel composite characterized in this work could be suitable for socket-limb load transfer for PS fabrication.

16.
ACS Appl Mater Interfaces ; 13(44): 51894-51905, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34086436

RESUMEN

The aspect ratio (AR) of filler particles is one of the most critical determinants for the mechanical properties of particle-reinforced polymer composites. However, it has been challenging to solely study the effect of particle AR due to the difficulties of controlling AR without altering the physical and chemical properties of the particle. Herein, we synthesized PCN-222, a zirconium-based porphyrinic metal-organic framework (MOF) with preferential longitudinal growth as a series of particles with ARs increasing from 3.4 to 54. The synthetic MOF conditions allowed for the chemical properties of the particles to remain constant over the series. The particles were employed as reinforcers for poly(methyl methacrylate) (PMMA). MOF-polymer composite films were fabricated using doctor-blading techniques, which facilitated particle dispersion and alignment in the PMMA matrix, as revealed by optical microscopy and wide-angle X-ray diffraction. Mechanical measurements showed that both elastic and dynamic moduli increased with particle AR and particle concentrations but started to decrease as particle loading increased beyond 0.5 wt % (1.12 vol %). The data obtained at low particle loadings were fitted well with the Halpin-Tsai model. In contrast, the percolation model and the Cox model were unable to adequately fit the data, indicating the mechanical reinforcement in our system mainly originated from efficient load transfer between particles and the matrix in the particle orienting direction. Finally, we showed that the thermal stability of composite films increased with the addition of MOF particles because of the high thermal degradation temperature and restricted polymer chain mobility.

17.
Molecules ; 25(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316421

RESUMEN

The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone® (KHSO5), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone®-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs. Nanoparticle-sized cellulose fibers of 5 and 16 nm, respectively, were confirmed through electron microscopy. Infrared spectroscopy showed that the most carboxylation presented in Form II. Conductometric titration showed a two-fold increase in carboxylation from Form I (800 mmol/kg) to Form II (1600 mmol/kg). OTO-CNMs showed cellulose crystallinity in the range of 64-68% and crystallite sizes of 1.4-3.3 nm, as shown through XRD. OTO-CNMs show controlled variability in hydrophilicity with contact angles ranging from 16 to 32°, within or below the 26-47° reported in the literature for TEMPO-oxidized CNMs. Newly discovered OTO-CNM Form II shows enhanced hydrophilic properties as well as unique crystallinity and chemical functionalization in the field of bio-sourced material and nanocomposites.


Asunto(s)
Celulosa Oxidada/química , Nanoestructuras/química , Piperidinas/química , Ácidos Sulfúricos/química , Densitometría , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Difracción de Rayos X
18.
Biomacromolecules ; 21(3): 1103-1111, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32003977

RESUMEN

This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long-term effects of solution-based anticoagulants. Thus, CNCs represent an ideal foundation for generating materials biocompatible with blood. In this study, we developed a biocompatible material that inhibits blood clotting through surface functionalization to mimic heparin. Surface chemistry of CNCs was modified from "plain" CNCs (70 mmol SO3-/kg) to 500 mmol COO-/kg (TEMPO-oxidized CNCs) and 330 mmol SO3-/kg CNCs (sulfonated CNCs). Platelet adherence and blood assays show that changes in functionalization reduce coagulation. By utilizing and modifying CNCs reactive functional groups, we create a material with unique and favorable mechanical properties while also reducing clotting.


Asunto(s)
Celulosa , Nanopartículas , Materiales Biocompatibles , Heparina , Polisacáridos
19.
Mater Sci Eng C Mater Biol Appl ; 108: 110191, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923988

RESUMEN

Effective therapeutic delivery of peptide and protein drugs is challenged by short in vivo half-lives due to rapid degradation. Sustained release formulations of αCT1, a 25 amino acid peptide drug, would afford lower dosing frequency in indications that require long term treatment, such as chronic wounds and cancers. In this study, rhodamine B (RhB) was used as a model drug to develop and optimize a double emulsion-solvent evaporation method of poly(lactic-co-glycolic acid) (PLGA) nanoparticle synthesis. Encapsulation of αCT1 in these nanoparticles (NPs) resulted in a sustained in vitro release profile over three weeks, characterized by an initial burst release of approximately 50% of total encapsulated drug over the first three days followed by sustained release over the remaining two and a half weeks. NP uptake by glioblastoma stem cells was through endocytosis and RhB and αCT1 were observed in cells after at least 4 days.


Asunto(s)
Materiales Biomiméticos , Conexina 43 , Glioblastoma , Nanopartículas , Péptidos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Línea Celular Tumoral , Conexina 43/química , Conexina 43/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Péptidos/química , Péptidos/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología
20.
Artículo en Inglés | MEDLINE | ID: mdl-31681754

RESUMEN

Bioprinting has advanced drastically in the last decade, leading to many new biomedical applications for tissue engineering and regenerative medicine. However, there are still a myriad of challenges to overcome, with vast amounts of research going into bioprinter technology, biomaterials, cell sources, vascularization, innervation, maturation, and complex 4D functionalization. Currently, stereolithographic bioprinting is the primary technique for polymer resin bioinks. However, it lacks the ability to print multiple cell types and multiple materials, control directionality of materials, and place fillers, cells, and other biological components in specific locations among the scaffolds. This study sought to create bioinks from a typical polymer resin, poly(ethylene glycol) diacrylate (PEGDA), for use in extrusion bioprinting to fabricate gradient scaffolds for complex tissue engineering applications. Bioinks were created by adding cellulose nanocrystals (CNCs) into the PEGDA resin at ratios from 95/5 to 60/40 w/w PEGDA/CNCs, in order to reach the viscosities needed for extrusion printing. The bioinks were cast, as well as printed into single-material and multiple-material (gradient) scaffolds using a CELLINK BIOX printer, and crosslinked using lithium phenyl-2,4,6-trimethylbenzoylphosphinate as the photoinitiator. Thermal and mechanical characterizations were performed on the bioinks and scaffolds using thermogravimetric analysis, rheology, and dynamic mechanical analysis. The 95/5 w/w composition lacked the required viscosity to print, while the 60/40 w/w composition displayed extreme brittleness after crosslinking, making both CNC compositions non-ideal. Therefore, only the bioink compositions of 90/10, 80/20, and 70/30 w/w were used to produce gradient scaffolds. The gradient scaffolds were printed successfully and embodied unique mechanical properties, utilizing the benefits of each composition to increase mechanical properties of the scaffold as a whole. The bioinks and gradient scaffolds successfully demonstrated tunability of their mechanical properties by varying CNC content within the bioink composition and the compositions used in the gradient scaffolds. Although stereolithographic bioprinting currently dominates the printing of PEGDA resins, extrusion bioprinting will allow for controlled directionality, cell placement, and increased complexity of materials and cell types, improving the reliability and functionality of the scaffolds for tissue engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...