Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202640

RESUMEN

Our study was designed to acquire, characterize and evaluate the biocompatibility of novel lipid vesicles loaded with acetaminophen (APAP) and coated with chitosan (CS). We investigated the in vitro and in vivo drug release kinetics from these systems, and we conducted assessments for both in vitro hemocompatibility and in vivo biocompatibility. For the in vivo biocompatibility evaluation, the mice were randomly divided into four groups of six animals and were treated orally as follows: control group: 0.1 mL/10 g body weight of double-distilled water; CS group: 0.1 mL/10 g body weight 1% CS solution; APAP group: 150 mg/kg body weight APAP; APAP-v group: 150 mg/kg body weight APAP-loaded lipid vesicles. The impact of APAP-v on various hematological, biochemical, and immune parameters in mice were assessed, and the harvested tissues were subjected to histopathological examination. The innovative formulations effectively encapsulating APAP within soft vesicles exhibited reasonable stability in solution and prolonged drug release in both in vitro and in vivo studies. The in vitro hemolysis test involving APAP-loaded vesicles revealed no signs of damage to red blood cells. The mice treated with APAP-v showed neither significant variances in hematological, biochemical, and immune parameters, nor structural changes in the examined organ samples, compared to the control group. APAP-v administration led to prolonged drug release. We can conclude that the APAP-v are innovative carrier systems for modifying drug release, making them promising candidates for biomedical applications.


Asunto(s)
Acetaminofén , Quitosano , Animales , Ratones , Preparaciones Farmacéuticas , Liberación de Fármacos , Acetaminofén/farmacología , Peso Corporal , Lípidos
2.
Medicina (Kaunas) ; 58(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36295524

RESUMEN

Background and objectives: Vortioxetine (VRT) is a relatively new selective serotonin reuptake inhibitor (SSRI) antidepressant and serotonin receptor modulator, approved for the treatment of major depression and generalized anxiety disorder. Depression has been linked with psychomotor disengagement, oxidative stress burden and decreased blood levels of brain-derived neurotrophic factor (BDNF). In our study we performed the experimental investigation of VRT, magnesium and of their association on the rats' endurance capacity, motor behavior and blood biological disturbances in rats subjected to forced exercise in treadmill test. Materials and Methods: The substances were administered orally for 14 consecutive days, as follows: group 1 (control): distilled water 0.3 mL/100 g body; group 2 (Mg): magnesium chloride 200 mg/kg body; group 3 (VRT): VRT 20 mg/kg body; group 4 (VRT+Mg): VRT 20 mg/kg body + magnesium chloride 200 mg/kg body. Magnesium was used as positive control substance with known effects in treadmill test. The consequences of VRT treatment on glucose, cortisol, BDNF and oxidative stress biomarkers (superoxide-dismutase, malondialdehyde, glutathione-peroxidase, lactate dehydrogenase) were also assessed. Results and conclusions: The use of VRT resulted in an improvement in motor capacity and an increase of the rats' endurance to physical effort. The administration of VRT increased the serum BDNF levels and reduced the oxidative stress in rats subjected to physical effort. The association of magnesium potentiated the effects of VRT on physical performances, the antioxidant activity and the decreasing in serum stress markers in treadmill test in rats.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Magnesio , Ratas , Animales , Vortioxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Antioxidantes , Cloruro de Magnesio , Hidrocortisona , Superóxidos , Glutatión Peroxidasa , Malondialdehído , Estrés Oxidativo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Biomarcadores , Glutatión , Rendimiento Físico Funcional , Glucosa , Lactato Deshidrogenasas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA