Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401534, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795019

RESUMEN

The exploration of one-dimensional (1D) magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, we explore structural, magnetic, and optical properties of highly anisotropic two-dimensional (2D) van der Waals antiferromagnets that uniquely host spin chains. First-principles calculations reveal that the weakest interaction is interchain, essentially leading to 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, we engineer the structure by alloying, varying the 1D spin chain length using electron beam irradiation, or twisting for localized patterning, and calculate spin textures, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, we anticipate these materials to bring fresh perspectives on harvesting low-dimensional magnetism. This article is protected by copyright. All rights reserved.

2.
ACS Nano ; 18(21): 13458-13467, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739873

RESUMEN

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

3.
Science ; 384(6693): 312-317, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669572

RESUMEN

Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

4.
ACS Catal ; 14(1): 406-417, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38205022

RESUMEN

The oxygen species on Ag catalysts and reaction mechanisms for ethylene epoxidation and ethylene combustion continue to be debated in the literature despite decades of investigation. Fundamental details of ethylene oxidation by supported Ag/α-Al2O3 catalysts were revealed with the application of high-angle annular dark-field-scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (HAADF-STEM-EDS), in situ techniques (Raman, UV-vis, X-ray diffraction (XRD), HS-LEIS), chemical probes (C2H4-TPSR and C2H4 + O2-TPSR), and steady-state ethylene oxidation and SSITKA (16O2 → 18O2 switch) studies. The Ag nanoparticles are found to carry a considerable amount of oxygen after the reaction. Density functional theory (DFT) calculations indicate the oxidative reconstructed p(4 × 4)-O-Ag(111) surface is stable relative to metallic Ag(111) under the relevant reaction environment. Multiple configurations of reactive oxygen species are present, and their relevant concentrations depend on treatment conditions. Selective ethylene oxidation to EO proceeds with surface Ag4-O2* species (dioxygen species occupying an oxygen site on a p(4 × 4)-O-Ag(111) surface) only present after strong oxidation of Ag. These experimental findings are strongly supported by the associated DFT calculations. Ethylene epoxidation proceeds via a Langmuir-Hinshelwood mechanism, and ethylene combustion proceeds via combined Langmuir-Hinshelwood (predominant) and Mars-van Krevelen (minor) mechanisms.

5.
ACS Nano ; 18(4): 3286-3294, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227802

RESUMEN

The controlled design of bimetallic nanoparticles (BNPs) is a key goal in tailoring their catalytic properties. Recently, biomimetic pathways demonstrated potent control over the distribution of different metals within BNPs, but a direct understanding of the peptide effect on the compositional distribution at the interparticle and intraparticle levels remains lacking. We synthesized two sets of PtAu systems with two peptides and correlated their structure, composition, and distributions with the catalytic activity. Structural and compositional analyses were performed by a combined machine learning-assisted refinement of X-ray absorption spectra and Z-contrast measurements by scanning transmission electron microscopy. The difference in the catalytic activities between nanoparticles synthesized with different peptides was attributed to the details of interparticle distribution of Pt and Au across these markedly heterogeneous systems, comprising Pt-rich, Au-rich, and Au core/Pt shell nanoparticles. The total amount of Pt in the shells of the BNPs was proposed to be the key catalytic activity descriptor. This approach can be extended to other systems of metals and peptides to facilitate the targeted design of catalysts with the desired activity.

6.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37409444

RESUMEN

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

7.
Nat Commun ; 14(1): 3222, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270579

RESUMEN

Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr2Te3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr2Te3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr2Te3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr2Te3 thin films offers new opportunities for topological electronics.

8.
Nano Lett ; 23(13): 5894-5901, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368991

RESUMEN

Oxidation of transition metal dichalcogenides (TMDs) occurs readily under a variety of conditions. Therefore, understanding the oxidation processes is necessary for successful TMD handling and device fabrication. Here, we investigate atomic-scale oxidation mechanisms of the most widely studied TMD, MoS2. We find that thermal oxidation results in α-phase crystalline MoO3 with sharp interfaces, voids, and crystallographic alignment with the underlying MoS2. Experiments with remote substrates prove that thermal oxidation proceeds via vapor-phase mass transport and redeposition, a challenge to forming thin, conformal films. Oxygen plasma accelerates the kinetics of oxidation relative to the kinetics of mass transport, forming smooth and conformal oxides. The resulting amorphous MoO3 can be grown with subnanometer to several-nanometer thickness, and we calibrate the oxidation rate for different instruments and process parameters. Our results provide quantitative guidance for managing both the atomic scale structure and thin-film morphology of oxides in the design and processing of TMD devices.

9.
J Am Chem Soc ; 145(9): 5410-5421, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36825993

RESUMEN

We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H2. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of in situ scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O2 at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O2 at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.

10.
J Am Chem Soc ; 144(37): 16778-16791, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36054824

RESUMEN

The dissociation of H2 is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H2-D2 exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H2-D2 exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K. Pretreatment with flowing H2 is required for stable catalytic performance, and two temperatures, 523 and 673 K, were investigated. The experimentally determined H2-D2 exchange rate is 5-7 times greater for npTiCu vs the undoped Cu material under optimized pretreatment and reaction temperatures. The H2 pretreatment leads to full reduction of Cu oxide and partial reduction of surface Ti oxide species present in the as-prepared catalyst as demonstrated using in situ ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The apparent activation energies and pre-exponential factors measured for H2-D2 exchange are substantially different for Ti-doped vs undoped npCu catalysts. Density functional theory calculations suggest that isolated, metallic Ti atoms on the surface of the Cu host can act as the active surface sites for hydrogen recombination. The increase in the rate of exchange above that of pure Cu is caused primarily by a shift in the rate-determining step from dissociative adsorption on Cu to H/D atom recombination on Ti-doped Cu, with the corresponding decrease in activation entropy that it produces.

11.
Biochemistry ; 61(19): 2106-2117, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36099002

RESUMEN

Ferritins are highly conserved supramolecular protein nanostructures that play a key role in iron homeostasis. Thousands of iron atoms can be stored inside their hollow cavity as a hydrated ferric oxyhydroxide mineral. Although phosphate associates with the ferritin iron nanoparticles, the effect of physiological concentrations on the kinetics, structure, and reactivity of ferritin iron cores has not yet been explored. Here, the iron loading and mobilization kinetics were studied in the presence of 1-10 mM phosphate using homopolymer and heteropolymer ferritins having different H to L subunit ratios. In the absence of ferritin, phosphate enhances the rate of ferrous ion oxidation and forms large and soluble polymeric Fe(III)-phosphate species. In the presence of phosphate, Fe(II) oxidation and core formation in ferritin is significantly accelerated with oxidation rates several-fold higher than with phosphate alone. High-angle annular dark-field scanning transmission electron microscopy measurements revealed a strong phosphate effect on both the size and morphology of the iron mineral in H-rich (but not L-rich) ferritins. While iron nanoparticles in L-rich ferritins have spherical shape in the absence and presence of phosphate, iron nanoparticles in H-rich ferritins change from irregular shapes in the absence of phosphate to spherical particles in the presence of phosphate with larger size distribution and smaller particle size. In the presence of phosphate, the kinetics of iron-reductive mobilization from ferritin releases twice as much iron than in its absence. Altogether, our results demonstrate an important role for phosphate, and the ferritin H and L subunit composition toward the kinetics of iron oxidation and removal from ferritin, as well as the structure and reactivity of the iron mineral, and may have an important implication on ferritin iron management in vivo.


Asunto(s)
Ferritinas , Hierro , Apoferritinas/metabolismo , Compuestos Férricos/química , Ferritinas/química , Compuestos Ferrosos/metabolismo , Humanos , Hierro/química , Cinética , Fosfatos/metabolismo
12.
J Am Chem Soc ; 144(17): 7919-7928, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35471010

RESUMEN

Optimizing the use of expensive precious metals is critical to developing sustainable and low-cost processes for heterogeneous catalysis or electrochemistry. Here, we report a synthesis method that yields core-shell Cu-Ru, Cu-Rh, and Cu-Ir nanoparticles with the platinum-group metals segregated on the surface. The synthesis of Cu-Ru, Cu-Rh, and Cu-Ir particles allows maximization of the surface area of these metals and improves catalytic performance. Furthermore, the Cu core can be selectively etched to obtain nanoshells of the platinum-group metal components, leading to a further increase in the active surface area. Characterization of the samples was performed with X-ray absorption spectroscopy, X-ray powder diffraction, and ex situ and in situ transmission electron microscopy. CO oxidation was used as a reference reaction: the three core-shell particles and derivatives exhibited promising catalyst performance and stability after redox cycling. These results suggest that this synthesis approach may optimize the use of platinum-group metals in catalytic applications.


Asunto(s)
Nanopartículas , Platino (Metal) , Catálisis , Electroquímica , Microscopía Electrónica de Transmisión , Nanopartículas/química , Platino (Metal)/química
13.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35254051

RESUMEN

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Asunto(s)
Aleaciones , Óxidos , Catálisis , Dominio Catalítico , Metales , Oxidación-Reducción , Óxidos/química
14.
Nat Commun ; 13(1): 832, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149699

RESUMEN

Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.

15.
Nanoscale Adv ; 5(1): 208-219, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36605807

RESUMEN

The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.

16.
ACS Nano ; 15(12): 20619-20632, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34780150

RESUMEN

Platinum is the primary catalyst for many chemical reactions in the field of heterogeneous catalysis. However, platinum is both expensive and rare. Therefore, it is advantageous to combine Pt with another metal to reduce cost while also enhancing stability. To that end, Pt is often combined with Co to form Co-Pt nanocrystals. However, dynamical restructuring effects that occur during reaction in Co-Pt ensembles can impact catalytic properties. In this study, model Co2Pt3 nanoparticles supported on carbon were characterized during a redox cycle with two in situ approaches, namely, X-ray absorption spectroscopy (XAS) and scanning transmission electron microscopy (STEM) using a multimodal microreactor. The sample was exposed to temperatures up to 500 °C under H2, and then to O2 at 300 °C. Irreversible segregation of Co in the Co2Pt3 particles was seen during redox cycling, and substantial changes of the oxidation state of Co were observed. After H2 treatment, a fraction of Co could not be fully reduced and incorporated into a mixed Co-Pt phase. Reoxidation of the sample increased Co segregation, and the segregated material had a different valence state than in the fresh, oxidized sample. This in situ study describes dynamical restructuring effects in CoPt nanocatalysts at the atomic scale that are crucial to understand in order to improve the design of catalysts used in major chemical processes.

17.
Nanoscale ; 13(26): 11427-11438, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160525

RESUMEN

Al2O3-supported Pt/Pd bimetallic catalysts were studied using in situ atmospheric pressure and ex situ transmission electron microscopy. Real-time observation during separate oxidation and reduction processes provides nanometer-scale structural details - both morphology and chemistry - of supported Pt/Pd particles at intermediate states not observable through typical ex situ experiments. Significant metal vaporization was observed at temperatures above 600 °C, both in pure oxygen and in air. This behavior implies that material transport through the vapor during typical catalyst aging processes for oxidation can play a more significant role in catalyst structural evolution than previously thought. Concomitantly, Pd diffusion away from metallic nanoparticles on the surface of Al2O3 can also contribute to the disappearance of metal particles. Electron micrographs from in situ oxidation experiments were mined for data, including particle number, size, and aspect ratio using machine learning image segmentation. Under oxidizing conditions, we observe not only a decrease in the number of metal particles but also a decrease in the surface area to volume ratio. Some of the metal that diffuses away from particles on the oxide support can be regenerated and reappears back on the catalyst support surface under reducing conditions. These observations provide insight on how rapid cycling between oxidative and reductive catalytic operating conditions affects catalyst structure.

18.
ACS Nano ; 15(6): 10228-10240, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34003639

RESUMEN

Liquid-cell scanning/transmission electron microscopy (S/TEM) has impacted our understanding of multiple areas of science, most notably nanostructure nucleation and growth and electrochemistry and corrosion. In the case of electrochemistry, the incorporation of electrodes requires the use of silicon nitride membranes to confine the liquid. The combined thickness of the liquid layer and the confining membranes prevents routine atomic-resolution characterization. Here, we show that by performing electrochemical water splitting in situ to generate a gas bubble, we can reduce the thickness of the liquid to a film approximately 30 nm thick that remains covering the sample. The reduced thickness of the liquid allows the acquisition of atomic-scale S/TEM images with chemical and valence analysis through electron energy loss spectroscopy (EELS) and structural analysis through selected area electron diffraction (SAED). This contrasts with a specimen cell entirely filled with liquid, where the broad plasmon peak from the liquid obscures the EELS signal from the sample and induces beam incoherence that impedes SAED analysis. The gas bubble generation is fully reversible, which allows alternating between a full cell and thin-film condition to obtain optimal experimental and analytical conditions, respectively. The methodology developed here can be applied to other scientific techniques, such as X-ray scattering, Raman spectroscopy, and X-ray photoelectron spectroscopy, allowing for a multi-modal, nanoscale understanding of solid-state samples in liquid media.

19.
ACS Nano ; 15(4): 6420-6429, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33848136

RESUMEN

One of the primary factors limiting further research and commercial use of the two-dimensional (2D) titanium carbide MXene Ti3C2, as well as MXenes in general, is the rate at which freshly made samples oxidize and degrade when stored as aqueous suspensions. Here, we show that including excess aluminum during synthesis of the Ti3AlC2 MAX phase precursor leads to Ti3AlC2 grains with improved crystallinity and carbon stoichiometry (termed Al-Ti3AlC2). MXene nanosheets (Al-Ti3C2) produced from this precursor are of higher quality, as evidenced by their increased resistance to oxidation and an increase in their electronic conductivity up to 20 000 S/cm. Aqueous suspensions of stoichiometric single- to few-layer Al-Ti3C2 flakes produced from the modified Al-Ti3AlC2 have a shelf life of over ten months, compared to 1 to 2 weeks for previously published Ti3C2, even when stored in ambient conditions. Freestanding films made from Al-Ti3C2 suspensions stored for ten months show minimal decreases in electrical conductivity and negligible oxidation. Furthermore, oxidation of the improved Al-Ti3C2 in air initiates at temperatures that are 100-150 °C higher than that of conventional Ti3C2. The observed improvements in both the shelf life and properties of Al-Ti3C2 will facilitate the widespread use of this material.

20.
ACS Appl Mater Interfaces ; 13(11): 13097-13105, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33715346

RESUMEN

The performance of metal-air batteries and fuel cells depends on the speed and efficiency of electrochemical oxygen reduction reactions at the cathode, which can be improved by engineering the atomic arrangement of cathode catalysts. It is, however, difficult to improve upon the performance of platinum nanoparticles in alkaline electrolytes with low-loading catalysts that can be manufactured at scale. Here, the authors synthesized nanoporous gold catalysts with increased (100) surface facets using electrochemical dealloying in sodium citrate surfactant electrolytes. These modified nanoporous gold catalysts achieved an 8% higher operating voltage and 30% greater power density in aluminum-air batteries over traditionally prepared nanoporous gold, and their performance was superior to commercial platinum nanoparticle electrodes at a 10 times lower mass loading. The authors used rotation disc electrode studies, backscattering of electrons, and underpotential deposition to show that the increased (100) facets improved the catalytic activity of citrate dealloyed nanoporous gold compared to conventional nanoporous gold. The citrate dealloyed samples also had the highest stability and least concentration of steps and kinks. The developed synthesis and characterization techniques will enable the design and synthesis of metal nanostructured catalysts with controlled facets for low-cost and mass production of metal-air battery cathodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...