Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885696

RESUMEN

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

2.
Food Energy Secur ; 12(1): e435, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37035025

RESUMEN

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.

3.
Front Plant Sci ; 13: 1017048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388577

RESUMEN

Phosphite represents a reduced form of phosphate that belongs to a class of crop growth-promoting chemicals termed biostimulants. Previous research has shown that phosphite application can enhance root growth, but its underlying mechanism, especially during environmental stresses, remains elusive. To uncover this, we undertook a series of morphological and physiological analyses under nutrient, water and heat stresses following a foliar application in wheat. Non-invasive 3D imaging of root system architecture directly in soil using X-ray Computed Tomography revealed that phosphite treatment improves root architectural traits and increased root biomass. Biochemical and physiological assays identified that phosphite treatment significantly increases Nitrate Reductase (NR) activity, leaf photosynthesis and stomatal conductance, suggesting improved Nitrogen and Carbon assimilation, respectively. These differences were more pronounced under heat or drought treatment (photosynthesis and photosystem II stability) and nutrient deficiency (root traits and NR). Overall our results suggest that phosphite treatment improves the ability of plants to tolerate abiotic stresses through improved Nitrogen and Carbon assimilation, combined with improved root growth which may improve biomass and yield.

4.
BMC Genomics ; 23(1): 298, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35413795

RESUMEN

BACKGROUND: Recently genomic selection (GS) has emerged as an important tool for plant breeders to select superior genotypes. Multi-trait (MT) prediction model provides an opportunity to improve the predictive ability of expensive and labor-intensive traits. In this study, we assessed the potential use of a MT genomic prediction model by incorporating two physiological traits (canopy temperature, CT and normalized difference vegetation index, NDVI) to predict 5 complex primary traits (harvest index, HI; grain yield, GY; grain number, GN; spike partitioning index, SPI; fruiting efiiciency, FE) using two cross-validation schemes CV1 and CV2. RESULTS: In this study, we evaluated 236 wheat genotypes in two locations in 2 years. The wheat genotypes were genotyped with genotyping by sequencing approach which generated 27,466 SNPs. MT-CV2 (multi-trait cross validation 2) model improved predictive ability by 4.8 to 138.5% compared to ST-CV1(single-trait cross validation 1). However, the predictive ability of MT-CV1 was not significantly different compared to the ST-CV1 model. CONCLUSIONS: The study showed that the genomic prediction of complex traits such as HI, GN, and GY can be improved when correlated secondary traits (cheaper and easier phenotyping) are used. MT genomic selection could accelerate breeding cycles and improve genetic gain for complex traits in wheat and other crops.


Asunto(s)
Genoma de Planta , Triticum , Genómica , Genotipo , Modelos Genéticos , Herencia Multifactorial , Fenotipo , Fitomejoramiento , Estaciones del Año , Selección Genética , Triticum/genética
5.
Nat Food ; 3(5): 318-324, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-37117579

RESUMEN

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.

7.
Front Plant Sci ; 9: 1021, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108599

RESUMEN

Doubled haploid and elite wheat genotypes were ground inoculated in three field experiments and head spray inoculated in two glasshouse experiments, using mixed Fusarium and Microdochium species, to identify crop canopy and ear traits associated with Fusarium head blight (FHB) disease. In all experiments, flag leaf length and tiller number were consistently identified as the most significant canopy traits contributing to progression of FHB caused by Fusarium graminearum, F. culmorum, and F. avenaceum. The influence of ear traits was greater for F. poae that may possess more diverse routes for transmission and spread. Consistently, spikelet density was associated with increased disease severity in the field. F. graminearum, F. culmorum, and F. langsethiae were the main mycotoxin producers and their respective toxins were significantly related to fungal biomass and number of spikelets per ear. Genotypes with lower tiller numbers, shorter flag leaves and less dense ears may be able to avoid FHB disease caused by F. graminearum, F. culmorum, F. avenaceum, or Microdochium species however selection for these canopy and ear architectural traits to enable disease avoidance in wheat is likely to result in a potential trade-off with grain yield and therefore only moderately advantageous in susceptible genotypes.

8.
Plant Physiol ; 176(2): 1233-1246, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217593

RESUMEN

Photosynthetic acclimation (photoacclimation) is the process whereby leaves alter their morphology and/or biochemistry to optimize photosynthetic efficiency and productivity according to long-term changes in the light environment. The three-dimensional architecture of plant canopies imposes complex light dynamics, but the drivers for photoacclimation in such fluctuating environments are poorly understood. A technique for high-resolution three-dimensional reconstruction was combined with ray tracing to simulate a daily time course of radiation profiles for architecturally contrasting field-grown wheat (Triticum aestivum) canopies. An empirical model of photoacclimation was adapted to predict the optimal distribution of photosynthesis according to the fluctuating light patterns throughout the canopies. While the photoacclimation model output showed good correlation with field-measured gas-exchange data at the top of the canopy, it predicted a lower optimal light-saturated rate of photosynthesis at the base. Leaf Rubisco and protein contents were consistent with the measured optimal light-saturated rate of photosynthesis. We conclude that, although the photosynthetic capacity of leaves is high enough to exploit brief periods of high light within the canopy (particularly toward the base), the frequency and duration of such sunflecks are too small to make acclimation a viable strategy in terms of carbon gain. This suboptimal acclimation renders a large portion of residual photosynthetic capacity unused and reduces photosynthetic nitrogen use efficiency at the canopy level, with further implications for photosynthetic productivity. It is argued that (1) this represents an untapped source of photosynthetic potential and (2) canopy nitrogen could be lowered with no detriment to carbon gain or grain protein content.


Asunto(s)
Aclimatación/fisiología , Modelos Biológicos , Fotosíntesis/fisiología , Triticum/fisiología , Luz , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Reino Unido
9.
J Surg Educ ; 73(4): 616-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26923102

RESUMEN

OBJECTIVE: Objective structured clinical examinations (OSCE) are widely used for summative assessment in surgery. Despite standardizing these as much as possible, variation, including examiner scoring, can occur which may affect reliability. In study of a high-stakes UK postgraduate surgical OSCE, we investigated whether examiners changing stations once during a long examining day affected marking, reliability, and overall candidates' scores compared with examiners who examined the same scenario all day. DESIGN, SETTING, AND PARTICIPANTS: An observational study of 18,262 examiner-candidate interactions from the UK Membership of the Royal College of Surgeons examination was carried at 3 Surgical Colleges across the United Kingdom. Scores between examiners were compared using analysis of variance. Examination reliability was assessed with Cronbach's alpha, and the comparative distribution of total candidates' scores for each day was evaluated using t-tests of unit-weighted z scores. RESULTS: A significant difference was found in absolute scores differences awarded in the morning and afternoon sessions between examiners who changed stations at lunchtime and those who did not (p < 0.001). No significant differences were found for the main effects of either broad content area (p = 0.290) or station content area (p = 0.450). The reliability of each day was not affected by examiner switching (p = 0.280). Overall, no difference was found in z-score distribution of total candidate scores and categories of examiner switching. CONCLUSIONS: This large study has found that although the range of marks awarded varied when examiners change OSCE stations, examination reliability and the likely candidate outcome were not affected. These results may have implications for examination design and examiner experience in surgical OSCEs and beyond.


Asunto(s)
Educación de Postgrado en Medicina , Evaluación Educacional/métodos , Cirugía General/educación , Competencia Clínica , Humanos , Reproducibilidad de los Resultados , Reino Unido
10.
Plant Physiol ; 169(2): 1192-204, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26282240

RESUMEN

Photoinhibition reduces photosynthetic productivity; however, it is difficult to quantify accurately in complex canopies partly because of a lack of high-resolution structural data on plant canopy architecture, which determines complex fluctuations of light in space and time. Here, we evaluate the effects of photoinhibition on long-term carbon gain (over 1 d) in three different wheat (Triticum aestivum) lines, which are architecturally diverse. We use a unique method for accurate digital three-dimensional reconstruction of canopies growing in the field. The reconstruction method captures unique architectural differences between lines, such as leaf angle, curvature, and leaf density, thus providing a sensitive method of evaluating the productivity of actual canopy structures that previously were difficult or impossible to obtain. We show that complex data on light distribution can be automatically obtained without conventional manual measurements. We use a mathematical model of photosynthesis parameterized by field data consisting of chlorophyll fluorescence, light response curves of carbon dioxide assimilation, and manual confirmation of canopy architecture and light attenuation. Model simulations show that photoinhibition alone can result in substantial reduction in carbon gain, but this is highly dependent on exact canopy architecture and the diurnal dynamics of photoinhibition. The use of such highly realistic canopy reconstructions also allows us to conclude that even a moderate change in leaf angle in upper layers of the wheat canopy led to a large increase in the number of leaves in a severely light-limited state.


Asunto(s)
Carbono/metabolismo , Imagenología Tridimensional/métodos , Modelos Biológicos , Triticum/fisiología , Fluorescencia , Luz , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
11.
Plant Cell Environ ; 35(10): 1799-823, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22860982

RESUMEN

Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.


Asunto(s)
Cruzamiento/métodos , Triticum/crecimiento & desarrollo , Triticum/genética , Biomasa , Ambiente , Luz , Modelos Biológicos , Fotosíntesis , Sitios de Carácter Cuantitativo , Triticum/fisiología , Triticum/efectos de la radiación
12.
Plant Cell ; 24(6): 2262-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22693282

RESUMEN

Global climate change and a growing population require tackling the reduction in arable land and improving biomass production and seed yield per area under varying conditions. One of these conditions is suboptimal water availability. Here, we review some of the classical approaches to dealing with plant response to drought stress and we evaluate how research on RECEPTOR-LIKE KINASES (RLKs) can contribute to improving plant performance under drought stress. RLKs are considered as key regulators of plant architecture and growth behavior, but they also function in defense and stress responses. The available literature and analyses of available transcript profiling data indeed suggest that RLKs can play an important role in optimizing plant responses to drought stress. In addition, RLK pathways are ideal targets for nontransgenic approaches, such as synthetic molecules, providing a novel strategy to manipulate their activity and supporting translational studies from model species, such as Arabidopsis thaliana, to economically useful crops.


Asunto(s)
Sequías , Fenómenos Fisiológicos de las Plantas , Proteínas Quinasas/fisiología , Proyectos de Investigación , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico
13.
J Opt Soc Am A Opt Image Sci Vis ; 28(11): 2209-17, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22048287

RESUMEN

The ability to improve the transmission and intensity profiles in absorbance-modulation optical lithography [J. Opt. Soc. Am. A 23, 2290-2294 (2006) and Phys. Rev. Lett. 98, 043905 (2007)] through the introduction of a plasmonic metal layer is investigated. In this part of the work, a plasmonic reflector layer (PRL) is placed beneath the photoresist layer. Improvement is expected due to surface plasmons being induced on the plasmonic layer and supporting the transmission of the image deeper into the imaging layer. The introduction of the plasmonic reflector improves the depth of focus markedly, with the image confinement extended up to 60 nm but with a penalty of up to a 50% increase in the minimum full width at half-maximum of the intensity profile. The presented work demonstrates that a PRL can be a valuable tool for near-field lithography.

14.
J Opt Soc Am A Opt Image Sci Vis ; 28(11): 2218-25, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22048288

RESUMEN

The ability to improve the transmission and intensity profiles in absorbance-modulation optical lithography (AMOL) [J. Opt. Soc. Am. A 23, 2290 (2006) and Phys. Rev. Lett. 98, 043905 (2007)] through the introduction of a plasmonic metal layer is investigated. In this part of the work, a plasmonic layer is placed between the absorbance-modulation layer and the photoresist layer. Transmission through this layer is possible due to the ability of thin plasmonic layers to act as near-field analogues of negative refraction materials. The superlens performance is best with a thin layer of 10-20 nm, although this causes a full width at half-maximum increase of ~50%. The introduction of the plasmonic layers allows dichroic filtering of the two wavelengths, with a difference of a factor of 10 in the transmitted intensity ratio, reducing undesirable exposure of the resist. The presented work demonstrates that a plasmonic layer can be interfaced with an AMOL system, but that further optimization and material development are needed to allow substantial performance improvements.

15.
Opt Express ; 19(18): 17790-8, 2011 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-21935147

RESUMEN

Absorbance-modulated lithography is a relatively new optical patterning method where a thin layer of photochromic molecules is placed between the far-field optics and photoresist. These molecules can be made transparent or opaque by illuminating with wavelengths λ1 or λ2, respectively. By simultaneously illuminating this layer with patterns of both wavelengths it is possible to create an absorption mask capable of subwavelength resolution. This resolution comes at the price of limited contrast and depth-of-focus resulting in poor process latitude. Here it is shown that by using TM polarization for λ1 and integrating a plasmonic reflector process latitude is increased by up to 66%.

16.
J Exp Bot ; 62(10): 3621-36, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21414962

RESUMEN

The genetic variability of the duration of leaf senescence during grain filling has been shown to affect both carbon and nitrogen acquisition. In particular, maintaining green leaves during grain filling possibly leads to increased grain yield, but its associated effect on grain protein concentration has not been studied. The aim of this study was to dissect the genetic factors contributing to correlations observed at the phenotypic level between leaf senescence during grain filling, grain protein concentration, and grain yield in winter wheat. With this aim in view, an analysis of quantitative trait locus (QTL) co-locations for these traits was carried out on a doubled haploid mapping population grown in a large multienvironment trial network. Pleiotropic QTLs affecting leaf senescence and grain yield and/or grain protein concentration were identified on chromosomes 2D, 2A, and 7D. These were associated with QTLs for anthesis date, showing that the phenotypic correlations with leaf senescence were mainly explained by flowering time in this wheat population. Study of the allelic effects of these pleiotropic QTLs showed that delaying leaf senescence was associated with increased grain yield or grain protein concentration depending on the environments considered. It is proposed that this differential effect of delaying leaf senescence on grain yield and grain protein concentration might be related to the nitrogen availability during the post-anthesis period. It is concluded that the benefit of using leaf senescence as a selection criterion to improve grain protein concentration in wheat cultivars may be limited and would largely depend on the targeted environments, particularly on their nitrogen availability during the post-anthesis period.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Triticum/genética , Grano Comestible/genética , Genotipo , Haploidia , Modelos Lineales , Nitrógeno/metabolismo , Sitios de Carácter Cuantitativo/genética
17.
Med Teach ; 27(1): 37-45, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16147769

RESUMEN

Reliability in written examinations is taken very seriously by examination boards and candidates alike. Within general education many factors influence reliability including variations between markers, within markers, within candidates and within teachers. Mechanisms designed to overcome, or at least minimize, the impact of such variables are detailed. Methods of establishing reliability are also explored in the context of a range of assessment situations. In written tests of general practice within the Membership of the Royal College of General Practitioner (MRCGP) examination considerable effort has put been put into achieving acceptable levels of reliability. Current mechanisms designed to ensure high reliability are described and related to the evolution of the written component of the examination. In addition to description of marker selection and training, question development including construct a detailed example of specific and generic marking schedules is provided. Examination results for the Written Paper of the MRCGP from 1998 to 2003 are reported including Cronbach's alpha coefficients and standard error of measurements, mean scores (and SD) and pass rates. In addition individual discrimination scores for each question in the October 2002 paper are shown. Consistent high reliability of the written component of the MRCGP examination provides valuable lessons in terms of selection, training and monitoring of markers as well as practical methods of moderating factors affecting candidate variability. The challenge for examination developers is to carry these important lessons forward into a modernized assessment structure of UK general practice.


Asunto(s)
Educación de Postgrado en Medicina , Evaluación Educacional/métodos , Evaluación Educacional/normas , Medicina Familiar y Comunitaria/educación , Medicina Familiar y Comunitaria/normas , Humanos , Control de Calidad , Reino Unido , Escritura
18.
Ann Bot ; 91(3): 383-90, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12547691

RESUMEN

A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture.


Asunto(s)
Modelos Teóricos , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Triticum/economía , Triticum/metabolismo , Agua/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA