Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(49)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37567221

RESUMEN

Classical models of spin-lattice coupling are at present unable to accurately reproduce results for numerous properties of ferromagnetic materials, such as heat transport coefficients or the sudden collapse of the magnetic moment in hcp-Fe under pressure. This inability has been attributed to the absence of a proper treatment of effects that are inherently quantum mechanical in nature, notably spin-orbit coupling (SOC). This paper introduces a time-dependent, non-collinear tight binding model, complete with SOC and vector Stoner exchange terms, that is capable of simulating the Einstein-de Haas (EdH) effect in a ferromagnetic Fe15cluster. The tight binding model is used to investigate the adiabaticity timescales that determine the response of the orbital and spin angular momenta to a rotating, externally appliedBfield, and we show that the qualitative behaviors of our simulations can be extrapolated to realistic timescales by use of the adiabatic theorem. An analysis of the trends in the torque contributions with respect to the field strength demonstrates that SOC is necessary to observe a transfer of angular momentum from the electrons to the nuclei at experimentally realisticBfields. The simulations presented in this paper demonstrate the EdH effect from first principles using a Fe cluster.

2.
Nat Rev Chem ; 7(10): 692-709, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37558761

RESUMEN

Deep learning methods outperform human capabilities in pattern recognition and data processing problems and now have an increasingly important role in scientific discovery. A key application of machine learning in molecular science is to learn potential energy surfaces or force fields from ab initio solutions of the electronic Schrödinger equation using data sets obtained with density functional theory, coupled cluster or other quantum chemistry (QC) methods. In this Review, we discuss a complementary approach using machine learning to aid the direct solution of QC problems from first principles. Specifically, we focus on quantum Monte Carlo methods that use neural-network ansatzes to solve the electronic Schrödinger equation, in first and second quantization, computing ground and excited states and generalizing over multiple nuclear configurations. Although still at their infancy, these methods can already generate virtually exact solutions of the electronic Schrödinger equation for small systems and rival advanced conventional QC methods for systems with up to a few dozen electrons.

3.
Phys Rev Lett ; 130(3): 036401, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763402

RESUMEN

Deep neural networks have been very successful as highly accurate wave function Ansätze for variational Monte Carlo calculations of molecular ground states. We present an extension of one such Ansatz, FermiNet, to calculations of the ground states of periodic Hamiltonians, and study the homogeneous electron gas. FermiNet calculations of the ground-state energies of small electron gas systems are in excellent agreement with previous initiator full configuration interaction quantum Monte Carlo and diffusion Monte Carlo calculations. We investigate the spin-polarized homogeneous electron gas and demonstrate that the same neural network architecture is capable of accurately representing both the delocalized Fermi liquid state and the localized Wigner crystal state. The network converges on the translationally invariant ground state at high density and spontaneously breaks the symmetry to produce the crystalline ground state at low density, despite being given no a priori knowledge that a phase transition exists.

4.
J Comput Neurosci ; 50(2): 241-249, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35182268

RESUMEN

An isotropic dynamical system is one that looks the same in every direction, i.e., if we imagine standing somewhere within an isotropic system, we would not be able to differentiate between different lines of sight. Conversely, anisotropy is a measure of the extent to which a system deviates from perfect isotropy, with larger values indicating greater discrepancies between the structure of the system along its axes. Here, we derive the form of a generalised scalable (mechanically similar) discretized field theoretic Lagrangian that allows for levels of anisotropy to be directly estimated via timeseries of arbitrary dimensionality. We generate synthetic data for both isotropic and anisotropic systems and, by using Bayesian model inversion and reduction, show that we can discriminate between the two datasets - thereby demonstrating proof of principle. We then apply this methodology to murine calcium imaging data collected in rest and task states, showing that anisotropy can be estimated directly from different brain states and cortical regions in an empirical in vivo biological setting. We hope that this theoretical foundation, together with the methodology and publicly available MATLAB code, will provide an accessible way for researchers to obtain new insight into the structural organization of neural systems in terms of how scalable neural regions grow - both ontogenetically during the development of an individual organism, as well as phylogenetically across species.


Asunto(s)
Encéfalo , Modelos Neurológicos , Animales , Anisotropía , Teorema de Bayes , Cabeza , Ratones
5.
Phys Rev Lett ; 127(8): 086401, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34477398

RESUMEN

According to Landau's Fermi liquid theory, the main properties of the quasiparticle excitations of an electron gas are embodied in the effective mass m^{*}, which determines the energy of a single quasiparticle, and the Landau interaction function, which indicates how the energy of a quasiparticle is modified by the presence of other quasiparticles. This simple paradigm underlies most of our current understanding of the physical and chemical behavior of metallic systems. The quasiparticle effective mass of the three-dimensional homogeneous electron gas has been the subject of theoretical controversy, and there is a lack of experimental data. In this Letter, we deploy diffusion Monte Carlo (DMC) methods to calculate m^{*} as a function of density for paramagnetic and ferromagnetic three-dimensional homogeneous electron gases. The DMC results indicate that m^{*} decreases when the density is reduced, especially in the ferromagnetic case. The DMC quasiparticle energy bands exclude the possibility of a reduction in the occupied bandwidth relative to that of the free-electron model at density parameter r_{s}=4, which corresponds to Na metal.

6.
J Math Neurosci ; 11(1): 10, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34386910

RESUMEN

The principle of stationary action is a cornerstone of modern physics, providing a powerful framework for investigating dynamical systems found in classical mechanics through to quantum field theory. However, computational neuroscience, despite its heavy reliance on concepts in physics, is anomalous in this regard as its main equations of motion are not compatible with a Lagrangian formulation and hence with the principle of stationary action. Taking the Dynamic Causal Modelling (DCM) neuronal state equation as an instructive archetype of the first-order linear differential equations commonly found in computational neuroscience, we show that it is possible to make certain modifications to this equation to render it compatible with the principle of stationary action. Specifically, we show that a Lagrangian formulation of the DCM neuronal state equation is facilitated using a complex dependent variable, an oscillatory solution, and a Hermitian intrinsic connectivity matrix. We first demonstrate proof of principle by using Bayesian model inversion to show that both the original and modified models can be correctly identified via in silico data generated directly from their respective equations of motion. We then provide motivation for adopting the modified models in neuroscience by using three different types of publicly available in vivo neuroimaging datasets, together with open source MATLAB code, to show that the modified (oscillatory) model provides a more parsimonious explanation for some of these empirical timeseries. It is our hope that this work will, in combination with existing techniques, allow people to explore the symmetries and associated conservation laws within neural systems - and to exploit the computational expediency facilitated by direct variational techniques.

7.
Front Comput Neurosci ; 15: 643148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967728

RESUMEN

We derive a theoretical construct that allows for the characterisation of both scalable and scale free systems within the dynamic causal modelling (DCM) framework. We define a dynamical system to be "scalable" if the same equation of motion continues to apply as the system changes in size. As an example of such a system, we simulate planetary orbits varying in size and show that our proposed methodology can be used to recover Kepler's third law from the timeseries. In contrast, a "scale free" system is one in which there is no characteristic length scale, meaning that images of such a system are statistically unchanged at different levels of magnification. As an example of such a system, we use calcium imaging collected in murine cortex and show that the dynamical critical exponent, as defined in renormalization group theory, can be estimated in an empirical biological setting. We find that a task-relevant region of the cortex is associated with higher dynamical critical exponents in task vs. spontaneous states and vice versa for a task-irrelevant region.

8.
PLoS Comput Biol ; 16(5): e1007865, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32365069

RESUMEN

In contrast to the symmetries of translation in space, rotation in space, and translation in time, the known laws of physics are not universally invariant under transformation of scale. However, a special case exists in which the action is scale invariant if it satisfies the following two constraints: 1) it must depend upon a scale-free Lagrangian, and 2) the Lagrangian must change under scale in the same way as the inverse time, [Formula: see text]. Our contribution lies in the derivation of a generalised Lagrangian, in the form of a power series expansion, that satisfies these constraints. This generalised Lagrangian furnishes a normal form for dynamic causal models-state space models based upon differential equations-that can be used to distinguish scale symmetry from scale freeness in empirical data. We establish face validity with an analysis of simulated data, in which we show how scale symmetry can be identified and how the associated conserved quantities can be estimated in neuronal time series.


Asunto(s)
Modelos Neurológicos , Neuronas/fisiología , Animales , Macaca , Imagen por Resonancia Magnética , Ratones
9.
J Chem Phys ; 150(22): 224109, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31202242

RESUMEN

The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.

10.
J Chem Theory Comput ; 15(3): 1728-1742, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30681844

RESUMEN

Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the past decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method allows one to systematically approach the exact solution of such problems, for cases where very high accuracy is desired. The introduction of FCIQMC has subsequently led to the development of coupled cluster Monte Carlo (CCMC) and density matrix quantum Monte Carlo (DMQMC), allowing stochastic sampling of the coupled cluster wave function and the exact thermal density matrix, respectively. In this Article, we describe the HANDE-QMC code, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semistochastic adaptations. We describe our code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and a real solid (diamond). An illustrative tutorial is also included.

11.
J Phys Condens Matter ; 30(31): 315901, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29916821

RESUMEN

A two-phase Hessian approach to DFT slab relaxation of slabs has been implemented and tested. It addresses weaknesses in the modified Broyden and Pfrommer BFGS algorithms specific to relaxing slabs. Complete Hessian and then inverse Hessian matrices with no strain/stress components are first constructed at high force signal-to-noise ratios with no accompanying relaxation. In a second phase the static inverse Hessian is used to relax the slab down to a low force tolerance.

12.
Phys Rev Lett ; 119(13): 135001, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29341671

RESUMEN

In a recent Letter [T. Dornheim et al., Phys. Rev. Lett. 117, 156403 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.156403], we presented the first quantum Monte Carlo (QMC) results for the warm dense electron gas in the thermodynamic limit. However, a complete parametrization of the exchange-correlation free energy with respect to density, temperature, and spin polarization remained out of reach due to the absence of (i) accurate QMC results below θ=k_{B}T/E_{F}=0.5 and (ii) QMC results for spin polarizations different from the paramagnetic case. Here we overcome both remaining limitations. By closing the gap to the ground state and by performing extensive QMC simulations for different spin polarizations, we are able to obtain the first completely ab initio exchange-correlation free energy functional; the accuracy achieved is an unprecedented ∼0.3%. This also allows us to quantify the accuracy and systematic errors of various previous approximate functionals.

13.
Phys Rev Lett ; 117(15): 156403, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768371

RESUMEN

We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N=1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F_{xc} of the macroscopic electron gas with an unprecedented accuracy of |ΔV|/|V|,|ΔF_{xc}|/|F|_{xc}∼10^{-3}. A comparison of our new data to the recent parametrization of F_{xc} by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.

14.
Phys Rev Lett ; 117(11): 115701, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27661699

RESUMEN

The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.

15.
Phys Rev Lett ; 116(4): 043201, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26871327

RESUMEN

We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

16.
J Chem Phys ; 143(16): 164509, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26520529

RESUMEN

We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C60. Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures.

17.
J Chem Phys ; 143(10): 102807, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26374000

RESUMEN

We present a systematic and comprehensive study of finite-size effects in diffusion quantum Monte Carlo calculations of metals. Several previously introduced schemes for correcting finite-size errors are compared for accuracy and efficiency, and practical improvements are introduced. In particular, we test a simple but efficient method of finite-size correction based on an accurate combination of twist averaging and density functional theory. Our diffusion quantum Monte Carlo results for lithium and aluminum, as examples of metallic systems, demonstrate excellent agreement between all of the approaches considered.

18.
J Chem Phys ; 143(4): 044116, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26233116

RESUMEN

The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

19.
Phys Rev Lett ; 112(16): 165501, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24815656

RESUMEN

A theoretical study is reported of the molecular-to-atomic transition in solid hydrogen at high pressure. We use the diffusion quantum Monte Carlo method to calculate the static lattice energies of the competing phases and a density-functional-theory-based vibrational self-consistent field method to calculate anharmonic vibrational properties. We find a small but significant contribution to the vibrational energy from anharmonicity. A transition from the molecular Cmca-12 direct to the atomic I41/amd phase is found at 374 GPa. The vibrational contribution lowers the transition pressure by 91 GPa. The dissociation pressure is not very sensitive to the isotopic composition. Our results suggest that quantum melting occurs at finite temperature.

20.
J Phys Condens Matter ; 25(12): 125501, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23420350

RESUMEN

By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs(-1) from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective.


Asunto(s)
Electrones , Metales/química , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...