Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 134(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495358

RESUMEN

Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.


Asunto(s)
Citoesqueleto , Proteómica , Transducción de Señal , Familia-src Quinasas , Animales , Células Cultivadas , Simulación de Dinámica Molecular , Fosforilación , Dominios Homologos src , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
2.
Mol Biol Cell ; 30(2): 181-190, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30462575

RESUMEN

Integrins are transmembrane receptors that have a pivotal role in mechanotransduction processes by connecting the extracellular matrix to the cytoskeleton. Although it is well established that integrin activation/inhibition cycles are due to highly dynamic interactions, whether integrin mobility depends on local tension and cytoskeletal organization remains surprisingly unclear. Using an original approach combining micropatterning on glass substrates to induce standardized local mechanical constraints within a single cell with temporal image correlation spectroscopy, we measured the mechanosensitive response of integrin mobility at the whole cell level and in adhesion sites under different mechanical constraints. Contrary to ß1 integrins, high tension increases ß3 integrin residence time in adhesive regions. Chimeric integrins and structure-function studies revealed that the ability of ß3 integrins to specifically sense local tensional organization is mostly encoded by its cytoplasmic domain and is regulated by tuning the affinity of its NPXY domains through phosphorylation by Src family kinases.


Asunto(s)
Integrina beta1/metabolismo , Integrina beta3/metabolismo , Familia-src Quinasas/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Integrina beta3/química , Mecanotransducción Celular , Ratones , Modelos Biológicos , Fosforilación , Dominios Proteicos , Transporte de Proteínas , Análisis Espectral , Familia-src Quinasas/antagonistas & inhibidores
3.
Mol Biol Cell ; 21(23): 4108-19, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20926684

RESUMEN

Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization-depolymerization associated with ß1 and ß3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell types. Use of ECM surfaces micropatterned at the subcellular scale clearly showed that in mesenchymal cells, integrin signaling controls invadosome activity. Using ß1⁻/⁻ or ß3⁻/⁻ cells, it seemed that ß1A but not ß3 integrins are essential for initiation of invadosome formation. Protein kinase C activity was shown to regulate autoassembly of invadosomes into a ring-like metastructure (rosette), probably by phosphorylation of Ser785 on the ß1A tail. Moreover, our study clearly showed that ß1A links actin dynamics and ECM degradation in invadosomes. Finally, a new strategy based on fusion of the photosensitizer KillerRed to the ß1A cytoplasmic domain allowed specific and immediate loss of function of ß1A, resulting in disorganization and disassembly of invadosomes and formation of focal adhesions.


Asunto(s)
Actinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Adhesión Celular , Estructuras de la Membrana Celular/fisiología , Integrina beta1/metabolismo , Animales , Estructuras de la Membrana Celular/ultraestructura , Movimiento Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Técnicas de Inactivación de Genes , Genes src , Integrina beta1/química , Integrina beta3/metabolismo , Mesodermo/metabolismo , Ratones , Fosforilación , Polimerizacion , Proteína Quinasa C/metabolismo , Transducción de Señal
4.
J Cell Sci ; 122(Pt 17): 3037-49, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19692590

RESUMEN

The invasiveness of cells is correlated with the presence of dynamic actin-rich membrane structures called invadopodia, which are membrane protrusions that are associated with localized polymerization of sub-membrane actin filaments. Similar to focal adhesions and podosomes, invadopodia are cell-matrix adhesion sites. Indeed, invadopodia share several features with podosomes, but whether they are distinct structures is still a matter of debate. Invadopodia are built upon an N-WASP-dependent branched actin network, and the Rho GTPase Cdc42 is involved in inducing invadopodial-membrane protrusion, which is mediated by actin filaments that are organized in bundles to form an actin core. Actin-core formation is thought to be an early step in invadopodium assembly, and the actin core is perpendicular to the extracellular matrix and the plasma membrane; this contrasts with the tangential orientation of actin stress fibers anchored to focal adhesions. In this Commentary, we attempt to summarize recent insights into the actin dynamics of invadopodia and podosomes, and the forces that are transmitted through these invasive structures. Although the mechanisms underlying force-dependent regulation of invadopodia and podosomes are largely unknown compared with those of focal adhesions, these structures do exhibit mechanosensitivity. Actin dynamics and associated forces might be key elements in discriminating between invadopodia, podosomes and focal adhesions. Targeting actin-regulatory molecules that specifically promote invadopodium formation is an attractive strategy against cancer-cell invasion.


Asunto(s)
Citoesqueleto de Actina/química , Estructuras de la Membrana Celular/química , Células/química , Adhesiones Focales/química , Neoplasias/química , Citoesqueleto de Actina/metabolismo , Animales , Fenómenos Biomecánicos , Estructuras de la Membrana Celular/metabolismo , Células/metabolismo , Adhesiones Focales/metabolismo , Humanos , Mecanotransducción Celular , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/patología
5.
J Cell Sci ; 118(Pt 15): 3445-57, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16079287

RESUMEN

Application of hydrodynamic mild shear stress to adherent Dictyostelium discoideum vegetative cells triggers active actin cytoskeleton remodeling resulting in net cell movement along the flow. The average cell speed is strongly stimulated by external calcium (Ca2+, K50%=22 microM), but the directionality of the movement is almost unaffected. This calcium concentration is ten times higher than the one promoting cell adhesion to glass surfaces (K50%=2 microM). Addition of the calcium chelator EGTA or the Ca2+-channel blocker gadolinium (Gd3+) transiently stops cell movement. Monitoring the evolution of cell-surface contact area with time reveals that calcium stimulates cell speed by increasing the amplitude of both protrusion and retraction events at the cell edge, but not the frequency. As a consequence, with saturating external calcium concentrations, cells are sensitive to very low shear forces (20 pN; sigma=0.1 Pa). Moreover, a null-mutant lacking the unique Gbeta subunit does not respond to external Ca2+ changes (K50%>1000 microM), although the directionality of the movement is comparable with that of wild-type cells. Furthermore, cells lacking the inositol 1,4,5-trisphosphate receptor (IP3-receptor) exhibit a markedly reduced Ca2+ sensitivity. Thus, calcium release from internal stores and calcium entry through the plasma membrane modulate cell speed in response to shear stress.


Asunto(s)
Calcio/metabolismo , Dictyostelium/metabolismo , Fluidez de la Membrana/fisiología , Actinas/química , Actinas/fisiología , Animales , Calcio/antagonistas & inhibidores , Calcio/farmacología , Adhesión Celular/fisiología , Línea Celular , Citoesqueleto/fisiología , Dictyostelium/química , Dictyostelium/citología , Relación Dosis-Respuesta a Droga , Ácido Egtácico/farmacología , Gadolinio/química , Gadolinio/farmacología , Vidrio , Fluidez de la Membrana/efectos de los fármacos , Modelos Químicos , Movimiento/efectos de los fármacos , Movimiento/fisiología , Sensibilidad y Especificidad , Resistencia al Corte , Propiedades de Superficie , Factores de Tiempo
6.
J Cell Sci ; 116(Pt 21): 4331-43, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12966168

RESUMEN

Application of a mild hydrodynamic shear stress to Dicytostelium discoideum cells, unable to detach cells passively from the substrate, triggers a cellular response consisting of steady membrane peeling at the rear edge of the cell and periodic cell contact extensions at its front edge. Both processes require an active actin cytoskeleton. The cell movement induced by the hydrodynamic forces is very similar to amoeboid cell motion during chemotaxis, as for its kinematic parameters and for the involvement of phosphatidylinositol(3,4,5)-trisphosphate internal gradient to maintain cell polarity. Inhibition of phosphoinositide 3-kinases by LY294002 randomizes the orientation of cell movement with respect to the flow without modifying cell speed. Two independent signaling pathways are, therefore, induced in D. discoideum in response to external forces. The first increases the frequency of pseudopodium extension, whereas the second redirects the actin cytoskeleton polymerization machinery to the edge opposite to the stressed side of the cell.


Asunto(s)
Quimiotaxis/fisiología , Dictyostelium/fisiología , Transducción de Señal/fisiología , Actinas/fisiología , Animales , Adhesión Celular , Cromonas/farmacología , Citoesqueleto/fisiología , Inhibidores Enzimáticos/farmacología , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Resistencia al Corte
7.
Phys Rev Lett ; 89(10): 108101, 2002 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12225229

RESUMEN

We present a direct optical observation of the behavior of the contact area between a living cell (Dictyostelium discoideum) and a solid substrate under shear flow. It is shown that the membrane is peeled off the substrate. The relationship between the peeling velocity and the applied force is obtained experimentally and explained from the behavior of individual adhesion bridges. The dissipation occurring during the peeling process is explicitly calculated in terms of out-of-equilibrium thermodynamics.


Asunto(s)
Movimiento Celular/fisiología , Dictyostelium/citología , Modelos Biológicos , Animales , Adhesión Celular/fisiología , Propiedades de Superficie
8.
Biophys J ; 82(5): 2383-95, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11964228

RESUMEN

Using Dictyostelium discoideum as a model organism of specific and nonspecific adhesion, we studied the kinetics of shear flow-induced cell detachment. For a given cell, detachment occurs for values of the applied hydrodynamic stress above a threshold. Cells are removed from the substrate with an apparent first-order rate constant that strongly depends on the applied stress. The threshold stress depends on cell size and physicochemical properties of the substrate, but is not affected by depolymerization of the actin and tubulin cytoskeleton. In contrast, the kinetics of cell detachment is almost independent of cell size, but is strongly affected by a modification of the substrate and the presence of an intact actin cytoskeleton. These results are interpreted in the framework of a peeling model. The threshold stress and the cell-detachment rate measure the local equilibrium energy and the dissociation rate constant of the adhesion bridges, respectively.


Asunto(s)
Adhesión Celular/fisiología , Dictyostelium/fisiología , Animales , División Celular , Tamaño de la Célula , Dictyostelium/citología , Cinética , Matemática , Modelos Biológicos , Movimiento , Estrés Mecánico
9.
J Muscle Res Cell Motil ; 23(7-8): 651-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12952064

RESUMEN

Among the different assays to measure cell adhesion, shear-flow detachment chambers offer the advantage to study both passive and active aspects of the phenomena on large cell numbers. Mathematical modeling allows full exploitation of the data by relating molecular parameters to cell mechanics. Using D. discoideum as a model system, we explain how cell detachment kinetics gives access to the rate constants describing the passive association or dissociation of the cell membrane to a given substrate.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Dictyostelium/fisiología , Animales , Membrana Celular/fisiología , Dictyostelium/genética , Modelos Biológicos , Mutagénesis , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA