Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatology ; 71(5): 1813-1830, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31505040

RESUMEN

BACKGROUND AND AIMS: Activated hepatocytes are hypothesized to be a major source of signals that drive cirrhosis, but the biochemical pathways that convert hepatocytes into such a state are unclear. We examined the role of the Hippo pathway transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in hepatocytes to facilitate cell-cell interactions that stimulate liver inflammation and fibrosis. APPROACH AND RESULTS: Using a variety of genetic, metabolic, and liver injury models in mice, we manipulated Hippo signaling in hepatocytes and examined its effects in nonparenchymal cells to promote liver inflammation and fibrosis. YAP-expressing hepatocytes rapidly and potently activate the expression of proteins that promote fibrosis (collagen type I alpha 1 chain, tissue inhibitor of metalloproteinase 1, platelet-derived growth factor c, transforming growth factor ß2) and inflammation (tumor necrosis factor, interleukin 1ß). They stimulate expansion of myofibroblasts and immune cells, followed by aggressive liver fibrosis. In contrast, hepatocyte-specific YAP and YAP/TAZ knockouts exhibit limited myofibroblast expansion, less inflammation, and decreased fibrosis after CCl4 injury despite a similar degree of necrosis as controls. We identified cellular communication network factor 1 (CYR61) as a chemokine that is up-regulated by hepatocytes during liver injury but is expressed at significantly lower levels in mice with hepatocyte-specific deletion of YAP or TAZ. Gain-of-function and loss-of-function experiments with CYR61 in vivo point to it being a key chemokine controlling liver fibrosis and inflammation in the context of YAP/TAZ. There is a direct correlation between levels of YAP/TAZ and CYR61 in liver tissues of patients with high-grade nonalcoholic steatohepatitis. CONCLUSIONS: Liver injury in mice and humans increases levels of YAP/TAZ/CYR61 in hepatocytes, thus attracting macrophages to the liver to promote inflammation and fibrosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Fisiológico , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Cadena alfa 1 del Colágeno Tipo I , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Humanos , Cirrosis Hepática/genética , Mutación con Pérdida de Función , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
2.
EMBO J ; 37(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30348863

RESUMEN

The Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that yap-/- mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis. Transcriptomic and metabolomic analyses reveal that Yap regulates expression of glucose transporter glut1, causing decreased glucose uptake and use for nucleotide biosynthesis in yap-/- mutants, and impaired glucose tolerance in adults. Nucleotide supplementation improves Yap deficiency phenotypes, indicating functional importance of glucose-fueled nucleotide biosynthesis. Yap-regulated glut1 expression and glucose uptake are conserved in mammals, suggesting that stimulation of anabolic glucose metabolism is an evolutionarily conserved mechanism by which the Hippo pathway controls organ growth. Together, our results reveal a central role for Hippo signaling in glucose metabolic homeostasis.


Asunto(s)
Glucosa/metabolismo , Hígado/embriología , Nucleótidos/biosíntesis , Transducción de Señal/fisiología , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Glucosa/genética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Nucleótidos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasa 3 , Transactivadores/genética , Proteínas Señalizadoras YAP , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
J Biol Chem ; 293(15): 5532-5543, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29519817

RESUMEN

The Hippo pathway controls cell proliferation and differentiation through the precisely tuned activity of a core kinase cassette. The activity of Hippo kinase is modulated by interactions between its C-terminal coiled-coil, termed the SARAH domain, and the SARAH domains of either dRassF or Salvador. Here, we wanted to understand the molecular basis of SARAH domain-mediated interactions and their influence on Hippo kinase activity. We focused on Salvador, a positive effector of Hippo activity and the least well-characterized SARAH domain-containing protein. We determined the crystal structure of a complex between Salvador and Hippo SARAH domains from Drosophila This structure provided insight into the organization of the Salvador SARAH domain including a folded N-terminal extension that expands the binding interface with Hippo SARAH domain. We also found that this extension improves the solubility of the Salvador SARAH domain, enhances binding to Hippo, and is unique to Salvador. We therefore suggest expanding the definition of the Salvador SARAH domain to include this extended region. The heterodimeric assembly observed in the crystal was confirmed by cross-linked MS and provided a structural basis for the mutually exclusive interactions of Hippo with either dRassF or Salvador. Of note, Salvador influenced the kinase activity of Mst2, the mammalian Hippo homolog. In co-transfected HEK293T cells, human Salvador increased the levels of Mst2 autophosphorylation and Mst2-mediated phosphorylation of select substrates, whereas Salvador SARAH domain inhibited Mst2 autophosphorylation in vitro These results suggest Salvador enhances the effects of Hippo kinase activity at multiple points in the Hippo pathway.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Drosophila , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Serina-Treonina Quinasa 3
4.
J Hepatol ; 63(6): 1491-501, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26226451

RESUMEN

The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study.


Asunto(s)
Neoplasias Hepáticas/fisiopatología , Hígado/fisiología , Animales , Proteínas de Drosophila/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Regeneración Hepática/fisiología , Modelos Biológicos , Proteínas Nucleares/fisiología , Tamaño de los Órganos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Transactivadores/fisiología , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA