Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 22(9): 1609-1620, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480159

RESUMEN

Regulator of G protein signaling (RGS) proteins have attracted attention as a result of their primary role in directing the specificity as well as the temporal and spatial aspects of G protein-coupled receptor signaling. In addition, alterations in RGS protein expression have been observed in a number of disease states, including certain cancers. In this area, RGS17 is of particular interest. It has been demonstrated that, while RGS17 is expressed primarily in the central nervous system, it has been found to be inappropriately expressed in lung, prostate, breast, cervical, and hepatocellular carcinomas. Overexpression of RGS17 leads to dysfunction in inhibitory G protein signaling and an overproduction of the intracellular second messenger cAMP, which in turn alters the transcription patterns of proteins known to promote various cancer types. Suppressing RGS17 expression with RNA interference (RNAi) has been found to decrease tumorigenesis and sufficiently prevents cancer cell migration, leading to the hypothesis that pharmacological blocking of RGS17 function could be useful in anticancer therapies. We have identified small-molecule fragments capable of binding the RGS homology (RH) domain of RGS17 by using a nuclear magnetic resonance fragment-based screening approach. By chemical shift mapping of the two-dimensional 15 N,1 H heteronuclear single quantum coherence (HSQC) spectra of the backbone-assigned 15 N-labeled RGS17-RH, we determined the fragment binding sites to be distant from the Gα interface. Thus, our study identifies a putative fragment binding site on RGS17 that was previously unknown.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas RGS/metabolismo , Sitios de Unión , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Proteínas RGS/antagonistas & inhibidores , Proteínas RGS/genética , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
2.
ACS Chem Neurosci ; 9(2): 346-357, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28968502

RESUMEN

Adenylyl cyclases (AC) catalyze the formation of cyclic AMP (cAMP) from ATP and are involved in a number of disease states, making them attractive potential drug targets. AC8, in particular, has been implicated in several neurological disorders. While development of small molecule AC inhibitors has generated some chemical leads, the lack of inhibitor specificity among AC family members has limited the identification of successful drug candidates. Therefore, finding alternative novel methods to suppress AC activity are needed. Because only AC1 and AC8 are robustly stimulated by calmodulin (CaM), we set out to explore the mechanism of disrupting the AC/CaM interaction as a way to selectively inhibit AC8. Through the development and implementation of a novel biochemical high-throughput-screening paradigm, we identified six small molecules from an FDA-approved compound library that are capable of disrupting the AC8/CaM interaction. These compounds were also shown to be able disrupt formation of this complex in cells, ultimately leading to decreased AC8 activity. Interestingly, further mechanistic analysis determined that these compounds functioned by binding to CaM and blocking its interaction with AC8. While these particular compounds could inhibit CaM interaction with both AC1 and AC8, they provide significant proof of concept for inhibition of ACs through disruption of CaM binding. These compounds, as dual AC1/AC8 inhibitors, provide important tools for probing pathological conditions where AC1/AC8 activity are enhanced, such as chronic pain and ethanol consumption. Furthermore, unlike tools such as genetic deletion, these compounds can be used in a dose-dependent fashion to determine the role of AC/CaM interactions in these pathologies.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Inhibidores Enzimáticos/farmacología , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , AMP Cíclico/metabolismo , Detergentes/farmacología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Estructura Molecular , Unión Proteica
3.
Biomol NMR Assign ; 11(2): 275-280, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28815458

RESUMEN

Calcineurin (CaN) is a heterodimeric and highly conserved serine/threonine phosphatase (PP2B) that plays a critical role in coupling calcium signals to physiological processes including embryonic cardiac development, NF-AT-regulated gene expression in immune responses, and apoptosis. The catalytic subunit (CaNA) has three isoforms (α, ß, and γ,) in humans and seven isoforms in Paramecium. In all eukaryotes, the EF-hand protein calmodulin (CaM) regulates CaN activity in a calcium-dependent manner. The N- and C-domains of CaM (CaMN and CaMC) recognize a CaM-binding domain (CaMBD) within an intrinsically disordered region of CaNA that precedes the auto-inhibitory domain (AID) of CaNA. Here we present nearly complete 1H, 13C, and 15N resonance assignments of (Ca2+)4-CaM bound to a peptide containing the CaMBD sequence in the beta isoform of CaNA (ßCaNA-CaMBDp). Its secondary structure elements predicted from the assigned chemical shifts were in good agreement with those observed in the high-resolution structures of (Ca2+)4-CaM bound to CaMBDs of multiple enzymes. Based on the reported literature, the CaMBD of the α isoform of CaNA can bind to CaM in two opposing orientations which may influence the regulatory function of CaM. Because a high resolution structure of (Ca2+)4-CaM bound to ßCaNA-CaMBDp has not been reported, our studies serve as a starting point for determining the solution structure of this complex. This will demonstrate the preferred orientation of (Ca2+)4-CaM on the CaMBD as well as the orientations of CaMN and CaMC relative to each other and to the AID of ßCaNA.


Asunto(s)
Calcineurina/química , Calcio/metabolismo , Calmodulina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Unión Proteica
4.
Biophys Chem ; 224: 1-19, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28343066

RESUMEN

Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel NaV1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat NaV1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca2+)4-CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca2+)4-CaM, NMR demonstrated that NaV1.2 IQ motif peptide (NaV1.2IQp) exclusively made contacts with C-domain residues of CaM (CaMC). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca2+)2-CaMC bound to NaV1.2IQp. The polarity of (Ca2+)2-CaMC relative to the IQ motif was opposite to that seen in apo CaMC-Nav1.2IQp (2KXW), revealing that CaMC recognizes nested, anti-parallel sites in Nav1.2IQp. Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaMN allowing interactions with non-IQ NaV1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif.


Asunto(s)
Secuencias de Aminoácidos , Calcio/farmacología , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/química , Animales , Sitios de Unión , Calcio/metabolismo , Proteínas del Tejido Nervioso/química , Resonancia Magnética Nuclear Biomolecular , Ratas
5.
Structure ; 24(12): 2053-2066, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27998539

RESUMEN

Conformational dynamics has an established role in enzyme catalysis, but its contribution to ligand binding and specificity is largely unexplored. Here we used the Tiam1 PDZ domain and an engineered variant (QM PDZ) with broadened specificity to investigate the role of structure and conformational dynamics in molecular recognition. Crystal structures of the QM PDZ domain both free and bound to ligands showed structural features central to binding (enthalpy), while nuclear-magnetic-resonance-based methyl relaxation experiments and isothermal titration calorimetry revealed that conformational entropy contributes to affinity. In addition to motions relevant to thermodynamics, slower microsecond to millisecond switching was prevalent in the QM PDZ ligand-binding site consistent with a role in ligand specificity. Our data indicate that conformational dynamics plays distinct and fundamental roles in tuning the affinity (conformational entropy) and specificity (excited-state conformations) of molecular interactions. More broadly, our results have important implications for the evolution, regulation, and design of protein-ligand interactions.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , Sitios de Unión , Humanos , Ligandos , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Dominios PDZ , Unión Proteica , Conformación Proteica , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Termodinámica
6.
Proteins ; 84(11): 1748-1756, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27488393

RESUMEN

Tcb2 is a calcium-binding protein that localizes to the membrane-associated skeleton of the ciliated protozoan Tetrahymena thermophila with hypothesized roles in ciliary movement, cell cortex signaling, and pronuclear exchange. Tcb2 has also been implicated in a unique calcium-triggered, ATP-independent type of contractility exhibited by filamentous networks isolated from the Tetrahymena cytoskeleton. To gain insight into Tcb2's structure-function relationship and contractile properties, we determined solution NMR structures of its C-terminal domain in the calcium-free and calcium-bound states. The overall architecture is similar to other calcium-binding proteins, with paired EF-hand calcium-binding motifs. Comparison of the two structures reveals that Tcb2-C's calcium-induced conformational transition differs from the prototypical calcium sensor calmodulin, suggesting that the two proteins play distinct functional roles in Tetrahymena and likely have different mechanisms of target recognition. Future studies of the full-length protein and the identification of Tcb2 cellular targets will help establish the molecular basis of Tcb2 function and its unique contractile properties. Proteins 2016; 84:1748-1756. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/química , Calmodulina/química , Proteínas del Citoesqueleto/química , Proteínas Protozoarias/química , Tetrahymena thermophila/genética , Secuencia de Aminoácidos , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Motivos EF Hand , Expresión Génica , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Alineación de Secuencia , Tetrahymena thermophila/metabolismo
7.
Biomol NMR Assign ; 10(2): 281-5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27155947

RESUMEN

Tcb2 is a putative calcium-binding protein from the membrane-associated cytoskeleton of the ciliated protozoan Tetrahymena thermophila. It has been hypothesized to participate in several calcium-mediated processes in Tetrahymena, including ciliary movement, cell cortex signaling, and pronuclear exchange. Sequence analysis suggests that the protein belongs to the calmodulin family, with N- and C-terminal domains connected by a central linker, and two helix-loop-helix motifs in each domain. However, its calcium-binding properties, structure and precise biological function remain unknown. Interestingly, Tcb2 is a major component of unique contractile fibers isolated from the Tetrahymena cytoskeleton; in these fibers, addition of calcium triggers an ATP-independent type of contraction. Here we report the (1)H, (13)C and (15)N backbone and side-chain chemical shift assignments of the C-terminal domain of the protein (Tcb2-C) in the absence and presence of calcium ions. (1)H-(15)N HSQC spectra show that the domain is well folded both in the absence and presence of calcium, and undergoes a dramatic conformational change upon calcium addition. Secondary structure prediction from chemical shifts reveals an architecture encountered in other calcium-binding proteins, with paired EF-hand motifs connected by a flexible linker. These studies represent a starting point for the determination of the high-resolution solution structure of Tcb2-C at both low and high calcium levels, and, together with additional structural studies on the full-length protein, will help establish the molecular basis of Tcb2 function and unique contractile properties.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Citoesqueleto/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/citología , Secuencia de Aminoácidos , Dominios Proteicos
8.
Biochemistry ; 52(4): 627-39, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23290046

RESUMEN

SPOR domains are present in thousands of bacterial proteins and probably bind septal peptidoglycan (PG), but the details of the SPOR-PG interaction have yet to be elucidated. Here we characterize the structure and function of the SPOR domain for an Escherichia coli division protein named DamX. Nuclear magnetic resonance revealed the domain comprises a four-stranded antiparallel ß-sheet buttressed on one side by two α-helices. A third helix, designated α3, associates with the other face of the ß-sheet, but this helix is relatively mobile. Site-directed mutagenesis revealed the face of the ß-sheet that interacts with α3 is important for septal localization and binding to PG sacculi. The position and mobility of α3 suggest it might regulate PG binding, but although α3 deletion mutants still localized to the septal ring, they were too unstable to use in a PG binding assay. Finally, to assess the importance of the SPOR domain in DamX function, we constructed and characterized E. coli mutants that produced DamX proteins with SPOR domain point mutations or SPOR domain deletions. These studies revealed the SPOR domain is important for multiple activities associated with DamX: targeting the protein to the division site, conferring full resistance to the bile salt deoxycholate, improving the efficiency of cell division when DamX is produced at normal levels, and inhibiting cell division when DamX is overproduced.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Peptidoglicano/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , División Celular , Secuencia Conservada , Ácido Desoxicólico/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Propiedades de Superficie
9.
J Biol Chem ; 288(10): 6890-902, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23300079

RESUMEN

NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2.


Asunto(s)
Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Immunoblotting , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteína Adaptadora de Señalización NOD1/química , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD2/química , Proteína Adaptadora de Señalización NOD2/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/química , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Homología de Secuencia de Aminoácido , Ubiquitina/química , Ubiquitina/genética
10.
Cancer Cell ; 22(2): 250-62, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22897854

RESUMEN

Hepatocyte growth factor (HGF) and vascular endothelial cell growth factor (VEGF) regulate normal development and homeostasis and drive disease progression in many forms of cancer. Both proteins signal by binding to receptor tyrosine kinases and heparan sulfate (HS) proteoglycans on target cell surfaces. Basic residues comprising the primary HS binding sites on HGF and VEGF provide similar surface charge distributions without underlying structural similarity. Combining three acidic amino acid substitutions in these sites in the HGF isoform NK1 or the VEGF isoform VEGF165 transformed each into potent, selective competitive antagonists of their respective normal and oncogenic signaling pathways. Our findings illustrate the importance of HS in growth factor driven cancer progression and reveal an efficient strategy for therapeutic antagonist development.


Asunto(s)
Marcación de Gen , Heparitina Sulfato/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígenos CD34/metabolismo , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Perros , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/química , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Unión Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/farmacología
11.
Proteins ; 79(3): 765-86, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21287611

RESUMEN

Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca(2+)-calmodulin-dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T-cell activation and cardiac hypertrophy in humans. Calcium binding to CaN(B) (the regulatory subunit) triggers conformational change in CaN(A) (the catalytic subunit). Two isoforms of CaN(A) (α, ß) are both abundant in brain and heart and activated by calcium-saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca(2+))4-CaM(1-148) bound to ßCaNp, a peptide representing its CaM-binding domain, indicated a 1:1 stoichiometry. ßCaNp binding to CaM increased the affinity of calcium for the N- and C-domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium-saturated CaM domains dissociating from ßCaNp were ∼1 µM. A limiting K(d) ≤ 1 nM was measured directly for full-length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. ßCaNp binding to ¹5N-(Ca(2+))4-CaM(1-148) monitored by ¹5N/¹HN HSQC NMR showed that association perturbed the N-domain of CaM more than its C-domain. NMR resonance assignments of CaM and ßCaNp, and interpretation of intermolecular NOEs observed in the ¹³C-edited and ¹²C-¹4N-filtered 3D NOESY spectrum indicated anti-parallel binding. The sole aromatic residue (Phe) located near the ßCaNp C-terminus was in close contact with several residues of the N-domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of ßCaN.


Asunto(s)
Calcineurina/química , Calmodulina/química , Termodinámica , Secuencia de Aminoácidos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Homología de Secuencia de Aminoácido
12.
Proc Natl Acad Sci U S A ; 106(6): 1772-7, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19181847

RESUMEN

Outer membrane proteins (OMPs) of gram-negative bacteria are synthesized in the cytosol and must cross the periplasm before insertion into the outer membrane. The 17-kDa protein (Skp) is a periplasmic chaperone that assists the folding and insertion of many OMPs, including OmpA, a model OMP with a membrane embedded beta-barrel domain and a periplasmic alphabeta domain. Structurally, Skp belongs to a family of cavity-containing chaperones that bind their substrates in the cavity, protecting them from aggregation. However, some substrates, such as OmpA, exceed the capacity of the chaperone cavity, posing a mechanistic challenge. Here, we provide direct NMR evidence that, while bound to Skp, the beta-barrel domain of OmpA is maintained in an unfolded state, whereas the periplasmic domain is folded in its native conformation. Complementary cross-linking and NMR relaxation experiments show that the OmpA beta-barrel is bound deep within the Skp cavity, whereas the folded periplasmic domain protrudes outside of the cavity where it tumbles independently from the rest of the complex. This domain-based chaperoning mechanism allows the transport of beta-barrels across the periplasm in an unfolded state, which may be important for efficient insertion into the outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Bacterias Gramnegativas/química , Chaperonas Moleculares/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas
13.
J Mol Biol ; 378(1): 71-86, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18342330

RESUMEN

Although multiple viruses utilize host cell cyclophilins, including severe acute respiratory syndrome (SARS) and human immunodeficiency virus type-1(HIV-1), their role in infection is poorly understood. To help elucidate these roles, we have characterized the first virally encoded cyclophilin (mimicyp) derived from the largest virus discovered to date (the Mimivirus) that is also a causative agent of pneumonia in humans. Mimicyp adopts a typical cyclophilin-fold, yet it also forms trimers unlike any previously characterized homologue. Strikingly, immunofluorescence assays reveal that mimicyp localizes to the surface of the mature virion, as recently proposed for several viruses that recruit host cell cyclophilins such as SARS and HIV-1. Additionally mimicyp lacks peptidyl-prolyl isomerase activity in contrast to human cyclophilins. Thus, this study suggests that cyclophilins, whether recruited from host cells (i.e. HIV-1 and SARS) or virally encoded (i.e. Mimivirus), are localized on viral surfaces for at least a subset of viruses.


Asunto(s)
Ciclofilinas/química , Ciclofilinas/metabolismo , Virus ADN/química , Virus ADN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Ciclofilina A/química , Ciclofilina A/genética , Ciclofilina A/metabolismo , Ciclofilinas/genética , Virus ADN/genética , Humanos , Ligandos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/metabolismo , Conformación Proteica , Proteínas Virales/genética , Virión/química , Virión/metabolismo
14.
J Biomol NMR ; 31(1): 35-47, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15692737

RESUMEN

A suite of experiments are presented for the measurement of H(alpha)-C(alpha), C(alpha)-C', C(alpha)-C(beta) and H(N)-N couplings from uniformly 15N, 13C labeled proteins. Couplings are obtained from a series of intensity modulated two-dimensional H(N)-N spectra equivalent to the common 1H-15N-HSQC spectra, alleviating many overlap and assignment issues associated with other techniques. To illustrate the efficiency of this method, H(alpha)-C(alpha), C(alpha)-C', and H(N)-N isotropic scalar couplings were determined for ubiquitin from data collected in less than 4.5 h, C(alpha)-C(beta) data collection required 10 h. The resulting couplings were measured with an average error of +/-0.06, +/-0.05, +/-0.04 and +/-0.10 Hz, respectively. This study also shows H(alpha)-C(alpha) and C(alpha)-C(beta) couplings, valuable because they provide orientation of bond vectors outside the peptide plane, can be measured in a uniform and precise way. Superior accuracy and precision to existing 3D measurements for C(alpha)-C' couplings and increased precision compared to IPAP measurements for H(N)-N couplings are demonstrated. Minor modifications allow for acquisition of modulated H(N)-C' 2D spectra, which can yield additional well resolved peaks and significantly increase the number of measured RDCs for proteins with crowded 1H-15N resonances.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Carbono , Interpretación Estadística de Datos , Hidrógeno , Nitrógeno , Ubiquitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA