Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 52(33): 7963-80, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24513747

RESUMEN

Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions' aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant's values may be underestimated.

2.
J Res Natl Inst Stand Technol ; 101(5): 629-637, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-27805082

RESUMEN

A high temperature oil-bath-based-black-body source has been designed and constructed in the Radiometric Physics Division at the National Institute of Standards and Technology, Gaithersburg, MD. The goal of this work was to design a large aperture blackbody source with highly uniform radiance across the aperture, good temporal stability, and good reproducibility. This blackbody source operates in the 293 K to 473 K range with blackbody temperature combined standard uncertainties of 7.2 mK to 30.9 mK. The calculated emissivity of this source is 0.9997 with a standard uncertainty of 0.0003. With a 50 mm limiting aperture at the cavity entrance, the emissivity increases to 0.99996.

3.
J Res Natl Inst Stand Technol ; 100(3): 277-283, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-29151741

RESUMEN

Precise knowledge of the area of apertures used in high precision radiometry is extremely important. A method is presented here for the determination of the area of round and irregularly shaped apertures by comparison to a standard aperture which has been measured by other means to high accuracy. The method presented here is quick and has no physical contact with the fragile edge of the aperture opening. Total flux transfer methods are used in the area determination with total relative standard uncertainty of 0.033 % for 2 mm to 25 mm mean diameter apertures not including the area uncertainty of the standard aperture used. Currently the relative standard uncertainty in the area measurement for the stadard aperture is 0.022 %. The worst case relative standard uncertainty of the transfer measurement is 0.04 % including the uncertainty of the standard aperture area.

4.
J Res Natl Inst Stand Technol ; 100(5): 591-599, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-29151763

RESUMEN

A third generation water bath based black-body source has been designed and constructed in the Radiometric Physics Division at the National Institute of Standards and Technology, Gaithersburg, MD. The goal of this work was to design a large aperture blackbody source with improved temporal stability and reproducibility compared with earlier designs, as well as improved ease of use. These blackbody sources operate in the 278 K to 353 K range with water temperature combined standard uncertainties of 3.5 mK to 7.8 mK. The calculated emissivity of these sources is 0.9997 with a relative standard uncertainty of 0.0003. With a 50 mm limiting aperture at the cavity; entrance, the emissivity increases to 0.99997.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...