Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biophys J ; 122(11): 2125-2146, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36523158

RESUMEN

The twin arginine translocase (Tat) exports folded proteins across bacterial membranes. The putative pore-forming or membrane-weakening component (TatAd in B. subtilis) is anchored to the lipid bilayer via an unusually short transmembrane α-helix (TMH), with less than 16 residues. Its tilt angle in different membranes was analyzed under hydrophobic mismatch conditions, using synchrotron radiation circular dichroism and solid-state NMR. Positive mismatch (introduced either by reconstitution in short-chain lipids or by extending the hydrophobic TMH length) increased the helix tilt of the TMH as expected. Negative mismatch (introduced either by reconstitution in long-chain lipids or by shortening the TMH), on the other hand, led to protein aggregation. These data suggest that the TMH of TatA is just about long enough for stable membrane insertion. At the same time, its short length is a crucial factor for successful translocation, as demonstrated here in native membrane vesicles using an in vitro translocation assay. Furthermore, when reconstituted in model membranes with negative spontaneous curvature, the TMH was found to be aligned parallel to the membrane surface. This intrinsic ability of TatA to flip out of the membrane core thus seems to play a key role in its membrane-destabilizing effect during Tat-dependent translocation.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Proteínas de Escherichia coli/metabolismo
2.
Blood Adv ; 6(1): 129-137, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34653237

RESUMEN

Neutrophil extracellular traps (NETs) are networks of extracellular fibers primarily composed of DNA and histone proteins, which bind pathogens. We investigated NET formation in 12 patients with myelodysplastic syndrome (MDS) and 15 age-adjusted normal controls after stimulation with phorbol-12-myristate-13-acetate (PMA). Histones and neutrophil elastase were visualized by immunostaining. Since NET formation is triggered by reactive oxygen species (ROS), mainly produced by reduced NADP-oxidase and myeloperoxidase (MPO), ROS were analyzed by flow cytometry using hydroethidine, 3'-(p-aminophenyl) fluorescein, and 3'-(hydroxyphenyl) fluorescein. On fluorescence microscopy, PMA-stimulated MDS neutrophils generated fewer NETs than controls (stimulated increase from 17% to 67% vs 17% to 85%) (P = .02) and showed less cellular swelling (P = .04). The decrease in mean fluorescence intensity (MFI) of 4',6-diamidino-2-phenylindole, indicating chromatin decondensation, was significantly less in MDS neutrophils than controls (ΔMFI 3467 vs ΔMFI 4687, P = .03). In addition, the decrease in MFI for fluorescein isothiocyanate, indicating release of neutrophil elastase from cytoplasmic granules, was diminished in patients with MDS (P = .00002). On flow cytometry, less cell swelling after PMA (P = .02) and a smaller decrease in granularity after H2O2 stimulation (P = .002) were confirmed. PMA-stimulated ROS production and oxidative burst activity did not reveal significant differences between MDS and controls. However, inhibition of MPO activity was more easily achieved in patients with MDS (P = .01), corroborating the notion of a partial MPO defect. We conclude that NET formation is significantly impaired in MDS neutrophils. Although we found abnormalities of MPO-dependent generation of hypochloride, impaired ROS production may not be the only cause of deficient NETosis in MDS.


Asunto(s)
Trampas Extracelulares , Síndromes Mielodisplásicos , Trampas Extracelulares/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Síndromes Mielodisplásicos/metabolismo , Neutrófilos/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacología
3.
Front Cell Dev Biol ; 9: 705410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368155

RESUMEN

The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.

4.
J Biol Chem ; 294(38): 13902-13914, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31341014

RESUMEN

Twin-arginine-dependent translocases transport folded proteins across bacterial, archaeal, and chloroplast membranes. Upon substrate binding, they assemble from hexahelical TatC and single-spanning TatA and TatB membrane proteins. Although structural and functional details of individual Tat subunits have been reported previously, the sequence and dynamics of Tat translocase assembly remain to be determined. Employing the zero-space cross-linker N,N'-dicyclohexylcarbodiimide (DCCD) in combination with LC-MS/MS, we identified as yet unknown intra- and intermolecular contact sites of TatB and TatC. In addition to their established intramembrane binding sites, both proteins were thus found to contact each other through the soluble N terminus of TatC and the interhelical linker region around the conserved glutamyl residue Glu49 of TatB from Escherichia coli Functional analyses suggested that by interacting with the TatC N terminus, TatB improves the formation of a proficient substrate recognition site of TatC. The Glu49 region of TatB was found also to contact distinct downstream sites of a neighboring TatB molecule and to thereby mediate oligomerization of TatB within the TatBC receptor complex. Finally, we show that global DCCD-mediated cross-linking of TatB and TatC in membrane vesicles or, alternatively, creating covalently linked TatC oligomers prevents TatA from occupying a position close to the TatBC-bound substrate. Collectively, our results are consistent with a circular arrangement of the TatB and TatC units within the TatBC receptor complex and with TatA entering the interior TatBC-binding cavity through lateral gates between TatBC protomers.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sistema de Translocación de Arginina Gemela/metabolismo , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Cromatografía Liquida/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Modelos Moleculares , Unión Proteica/fisiología , Pliegue de Proteína , Señales de Clasificación de Proteína/genética , Transporte de Proteínas/fisiología , Relación Estructura-Actividad , Espectrometría de Masas en Tándem/métodos , Sistema de Translocación de Arginina Gemela/fisiología
5.
Orthop Rev (Pavia) ; 10(2): 7460, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30057720

RESUMEN

Osteoarthritis (OA) is the most frequently diagnosed joint disorder worldwide with increasing prevalence and crucial impact on the quality of life of affected patients through chronic pain, decreasing mobility and invalidity. Although some risk factors, such as age, obesity and previous joint injury are well established, the exact pathogenesis of OA on a cellular and molecular level remains less understood. Today, the role of nitrosative and oxidative stress has not been investigated conclusively in the pathogenesis of OA yet. Therefore, the objective of this study was to identify biological substances for oxidative and nitrosative stress, which mirror the degenerative processes in an osteoarthritic joint. 69 patients suffering from a diagnosed knee pain participated in this study. Based on the orthopedic diagnosis, patients were classified into an osteoarthritis group (OAG, n=24) or in one of two control groups (meniscopathy, CG1, n=11; anterior cruciate ligament rupture, CG2, n=34). Independently from the study protocol, all patients underwent an invasive surgical intervention which was used to collect samples from the synovial membrane, synovial fluid and human serum. Synovial biopsies were analyzed histopathologically for synovitis (Krenn-Score) and immunohistochemically for detection of end products of oxidative (8-isoprostane F2α) and nitrosative (3-nitrotyrosine) stress. Additionally, the fluid samples were analyzed for 8-isoprostane F2α and 3-nitrotyrosine by competitive ELISA method. The analyzation of inflammation in synovial biopsies revealed a slight synovitis in all three investigated groups. Detectable concentrations of 3-nitrotyrosine were reported in all three investigated groups without showing any significant differences between the synovial biopsies, fluid or human serum. In contrast, significant increased concentrations of 8-isoprostane F2α were detected in OAG compared to both control groups. Furthermore, our data showed a significant correlation between the histopathological synovitis and oxidative stress in OAG (r=0.728, P<0.01). There were no significant differences between the concentrations of 8-isoprostane F2α in synovial fluid and human serum. The findings of the current study support the hypothesis that oxidative and nitrosative stress are components of the multi-factory pathophysiological formation of OA. It seems reasonable that an inflammatory process in the synovial membrane triggers the generation of oxidative and nitrosative acting substances which can lead to a further degradation of the articular cartilage. Based on correlations between the observed degree of inflammation and investigated biomarkers, especially 8-isoprostane F2α seems to be a novel candidate biomarker for OA. However, due to the finding that also both control groups showed increased concentrations of selected biomarkers, future studies have to validate the diagnostic potential of these biomarkers in OA and in related conditions of the knee joint.

6.
Sci Rep ; 8(1): 1326, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358647

RESUMEN

Twin-arginine translocation (Tat) systems transport folded proteins that harbor a conserved arginine pair in their signal peptides. They assemble from hexahelical TatC-type and single-spanning TatA-type proteins. Many Tat systems comprise two functionally diverse, TatA-type proteins, denominated TatA and TatB. Some bacteria in addition express TatE, which thus far has been characterized as a functional surrogate of TatA. For the Tat system of Escherichia coli we demonstrate here that different from TatA but rather like TatB, TatE contacts a Tat signal peptide independently of the proton-motive force and restricts the premature processing of a Tat signal peptide. Furthermore, TatE embarks at the transmembrane helix five of TatC where it becomes so closely spaced to TatB that both proteins can be covalently linked by a zero-space cross-linker. Our results suggest that in addition to TatB and TatC, TatE is a further component of the Tat substrate receptor complex. Consistent with TatE being an autonomous TatAB-type protein, a bioinformatics analysis revealed a relatively broad distribution of the tatE gene in bacterial phyla and highlighted unique protein sequence features of TatE orthologs.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Homología de Secuencia
7.
J Biol Chem ; 292(52): 21320-21329, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29089385

RESUMEN

Twin-arginine translocation (Tat) systems transport folded proteins across cellular membranes with the concerted action of mostly three membrane proteins: TatA, TatB, and TatC. Hetero-oligomers of TatB and TatC form circular substrate-receptor complexes with a central binding cavity for twin-arginine-containing signal peptides. After binding of the substrate, energy from an electro-chemical proton gradient is transduced into the recruitment of TatA oligomers and into the actual translocation event. We previously reported that Tat-dependent protein translocation into membrane vesicles of Escherichia coli is blocked by the compound N,N'-dicyclohexylcarbodiimide (DCCD, DCC). We have now identified a highly conserved glutamate residue in the transmembrane region of E. coli TatC, which when modified by DCCD interferes with the deep insertion of a Tat signal peptide into the TatBC receptor complex. Our findings are consistent with a hydrophobic binding cavity formed by TatB and TatC inside the lipid bilayer. Moreover, we found that DCCD mediates discrete intramolecular cross-links of E. coli TatC involving both its N- and C-tails. These results confirm the close proximity of two distant sequence sections of TatC proposed to concertedly function as the primary docking site for twin-arginine signal peptides.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arginina/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X/métodos , Diciclohexilcarbodiimida/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Señales de Clasificación de Proteína/fisiología , Especificidad por Sustrato
8.
J Exp Med ; 214(12): 3791-3811, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29084819

RESUMEN

Mast cells (MCs) and dendritic cells (DCs) are essential innate sentinels populating host-environment interfaces. Using longitudinal intravital multiphoton microscopy of DCGFP/MCRFP reporter mice, we herein provide in vivo evidence that migratory DCs execute targeted cell-to-cell interactions with stationary MCs before leaving the inflamed skin to draining lymph nodes. During initial stages of skin inflammation, DCs dynamically scan MCs, whereas at a later stage, long-lasting interactions predominate. These innate-to-innate synapse-like contacts ultimately culminate in DC-to-MC molecule transfers including major histocompatibility complex class II (MHCII) proteins enabling subsequent ex vivo priming of allogeneic T cells with a specific cytokine signature. The extent of MHCII transfer to MCs correlates with their T cell priming efficiency. Importantly, preventing the cross talk by preceding DC depletion decreases MC antigen presenting capacity and T cell-driven inflammation. Consequently, we identify an innate intercellular communication arming resident MCs with key DC functions that might contribute to the acute defense potential during critical periods of migration-based DC absence.


Asunto(s)
Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Inflamación/inmunología , Inflamación/patología , Mastocitos/inmunología , Piel/patología , Animales , Presentación de Antígeno/inmunología , Comunicación Celular , Movimiento Celular , Forma de la Célula , Reactividad Cruzada/inmunología , Dermatitis por Contacto/inmunología , Dermatitis por Contacto/patología , Dinitrofluorobenceno , Oído/patología , Haptenos/inmunología , Procesamiento de Imagen Asistido por Computador , Ratones Endogámicos C57BL , Fenotipo , Linfocitos T/inmunología , Imagen de Lapso de Tiempo
9.
J Immunol ; 199(8): 2948-2957, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28887433

RESUMEN

The neurobeachin-like 2 protein (Nbeal2) belongs to the family of beige and Chediak-Higashi (BEACH) domain proteins. Loss-of-function mutations in the human NBEAL2 gene or Nbeal2 deficiency in mice cause gray platelet syndrome, a bleeding disorder characterized by macrothrombocytopenia, splenomegaly, and paucity of α-granules in megakaryocytes and platelets. We found that in mast cells, Nbeal2 regulates the activation of the Shp1-STAT5 signaling axis and the composition of the c-Kit/STAT signalosome. Furthermore, Nbeal2 mediates granule formation and restricts the expression of the transcription factors, IRF8, GATA2, and MITF as well as of the cell-cycle inhibitor p27, which are essential for mast cell differentiation, proliferation, and cytokine production. These data demonstrate the relevance of Nbeal2 in mast cells above and beyond granule biosynthesis.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Síndrome de Plaquetas Grises/genética , Mastocitos/fisiología , Megacariocitos/fisiología , Animales , Proteínas Sanguíneas/genética , Ciclo Celular , Células Cultivadas , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Hemorragia , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Noqueados , Mutación/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Esplenomegalia , Trombocitopenia
10.
J Biol Chem ; 292(26): 10865-10882, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28515319

RESUMEN

The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in their binding to the Tat translocase, but some facets of this interaction remain unclear. Here, we investigated the role of the hydrophobic (h-) region of the Escherichia coli trimethylamine N-oxide reductase (TorA) signal peptide in TatBC receptor binding in vivo and in vitro We show that besides the RR motif, a minimal, functional h-region in the signal peptide is required for Tat-dependent export in Escherichia coli Furthermore, we identified mutations in the h-region that synergistically suppressed the export defect of a TorA[KQ]-30aa-MalE Tat reporter protein in which the RR motif was replaced with a lysine-glutamine pair. Strikingly, all suppressor mutations increased the hydrophobicity of the h-region. By systematically replacing a neutral residue in the h-region with various amino acids, we detected a positive correlation between the hydrophobicity of the h-region and the translocation efficiency of the resulting reporter variants. In vitro cross-linking of residues located in the periplasmically-oriented part of the TatBC receptor to TorA[KQ]-30aa-MalE reporter variants harboring a more hydrophobic h-region in their signal peptides confirmed that unlike in TorA[KQ]-30aa-MalE with an unaltered h-region, the mutated reporters moved deep into the TatBC-binding cavity. Our results clearly indicate that, besides the Tat motif, the h-region of the Tat signal peptides is another important binding determinant that significantly contributes to the productive interaction of Tat precursor proteins with the TatBC receptor complex.


Asunto(s)
Precursores Enzimáticos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Señales de Clasificación de Proteína/fisiología , Secuencias de Aminoácidos , Precursores Enzimáticos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Oxidorreductasas N-Desmetilantes/genética , Periplasma/genética , Periplasma/metabolismo , Dominios Proteicos , Transporte de Proteínas
11.
Biomed Res Int ; 2016: 2042687, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069918

RESUMEN

Drugs may have a significant effect on postoperative bone healing by reducing the function of human mesenchymal stromal cells (hMSC) or mature osteoblasts. Although cefazolin is one of the most commonly used antibiotic drugs in arthroplasty to prevent infection worldwide, there is a lack of information regarding how cefazolin affects hMSC and therefore may have an effect on early bone healing. We studied the proliferation and migration capacity of primary hMSC during cefazolin treatment at various doses for up to 3 days, as well as the reversibility of the effects during the subsequent 3 days of culture without the drug. We found a time- and dose-dependent reduction of the proliferation rate and the migratory potential. Tests of whether these effects were reversible revealed that doses ≥ 250 µg/mL or treatments longer than 24 h irreversibly affected the cells. We are the first to show that application of cefazolin irreversibly inhibits the potential of hMSC for migration to the trauma site and local proliferation. Cefazolin should be administered only at the required dosage and time to prevent periprosthetic infection. If long-term administration is required and delayed bone healing is present, cefazolin application must be considered as a cause of delayed bone healing.


Asunto(s)
Cefazolina/toxicidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Adolescente , Adulto , Anciano , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Curación de Fractura/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Adulto Joven
12.
BMC Musculoskelet Disord ; 17: 108, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26927834

RESUMEN

BACKGROUND: Low-molecular-weight heparins (e.g. Enoxaparin) are widely used to prevent venous thromboembolism after orthopaedic surgery, but there are reports about serious side effects including reduction in bone density and strength. In recent years new oral antithrombotic drugs (e.g. direct Factor Xa-inhibitor, Rivaroxaban) have been used to prevent venous thromboembolism. However, there is lack of information on the effects of these new drugs on human mesenchymal stromal cells during osteogenic differentiation and, therefore, effects during postoperative bone healing. METHODS: We evaluated the effects of Rivaroxaban and Enoxaparin on the proliferation, mRNA and surface receptor expression as well as differentiation capacity of primary human mesenchymal stromal cells during their osteogenic differentiation. RESULTS: Enoxaparin, but not Rivaroxaban treatment significantly increased human mesenchymal stromal cell (hMSC) proliferation during the first week of osteogenic differentiation while suppressing osteogenic marker genes, surface receptor expression and calcification. CONCLUSIONS: This is the first paper to demonstrate that Rivaroxaban had no significant influence on hMSC differentiation towards the osteogenic lineage, indicating a less affected bone healing process compared with Enoxaparin in vitro. Based on these findings Rivaroxaban seems to be superior to Enoxaparin in early stages of bone healing in vitro.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Enoxaparina/farmacología , Fibrinolíticos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Rivaroxabán/farmacología , Adulto , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/fisiología , Osteogénesis/fisiología , Profilaxis Posexposición
13.
J Biol Chem ; 290(49): 29281-9, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26483541

RESUMEN

Twin-arginine translocation (Tat) systems mediate the transmembrane translocation of completely folded proteins that possess a conserved twin-arginine (RR) motif in their signal sequences. Many Tat systems consist of three essential membrane components named TatA, TatB, and TatC. It is not understood why some bacteria, in addition, constitutively express a functional paralog of TatA called TatE. Here we show, in live Escherichia coli cells, that, upon expression of a Tat substrate protein, fluorescently labeled TatE-GFP relocates from a rather uniform distribution in the plasma membrane into a number of discrete clusters. Clustering strictly required an intact RR signal peptide and the presence of the TatABC subunits, suggesting that TatE-GFP associates with functional Tat translocases. In support of this notion, site-specific photo cross-linking revealed interactions of TatE with TatA, TatB, and TatC. The same approach also disclosed a pronounced tendency of TatE and TatA to hetero-oligomerize. Under in vitro conditions, we found that TatE replaces TatA inefficiently. Our collective results are consistent with TatE being a regular constituent of the Tat translocase in E. coli.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Secuencias de Aminoácidos , Arginina/química , Membrana Celular/metabolismo , Reactivos de Enlaces Cruzados/química , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Plásmidos/metabolismo , Unión Proteica , Pliegue de Proteína , Señales de Clasificación de Proteína , Transporte de Proteínas
14.
Nat Commun ; 6: 7234, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26068441

RESUMEN

The so-called Tat (twin-arginine translocation) system transports completely folded proteins across cellular membranes of archaea, prokaryotes and plant chloroplasts. Tat-directed proteins are distinguished by a conserved twin-arginine (RR-) motif in their signal sequences. Many Tat systems are based on the membrane proteins TatA, TatB and TatC, of which TatB and TatC are known to cooperate in binding RR-signal peptides and to form higher-order oligomeric structures. We have now elucidated the fine architecture of TatBC oligomers assembled to form closed intramembrane substrate-binding cavities. The identification of distinct homonymous and heteronymous contacts between TatB and TatC suggest that TatB monomers coalesce into dome-like TatB structures that are surrounded by outer rings of TatC monomers. We also show that these TatBC complexes are approached by TatA protomers through their N-termini, which thereby establish contacts with TatB and membrane-inserted RR-precursors.


Asunto(s)
Sistema de Translocación de Arginina Gemela/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Sistema de Translocación de Arginina Gemela/química
16.
J Shoulder Elbow Surg ; 24(10): 1644-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25958213

RESUMEN

BACKGROUND: Cartilage biochemical imaging modalities that include the magnetic resonance imaging (MRI) techniques of T2* mapping (sensitive to water content and collagen fiber network) and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, sensitive to the glycosaminoglycan content) can be effective instruments for early diagnosis and reliable follow-up of cartilage damage. The purpose of this study was to provide T2* mapping and dGEMRIC values in various histologic grades of cartilage degeneration in humeral articular cartilage. METHODS: A histologically controlled in vitro study was conducted that included human humeral head cartilage specimens with various histologic grades of cartilage degeneration. High-resolution, 3-dimensional (3D) T2* mapping and dGEMRIC were performed that enabled the correlation of MRI and histology data. Cartilage degeneration was graded according to the Mankin score, which evaluates surface morphology, cellularity, toluidine blue staining, and tidemark integrity. SPSS software was used for statistical analyses. RESULTS: Both MRI mapping values decreased significantly (P < .001) with increasing cartilage degeneration. Spearman rank analysis revealed a significant correlation (correlation coefficients ranging from -0.315 to 0.784; P < .001) between the various histologic parameters and the T2* and T1Gd mapping values. CONCLUSION: This study demonstrates the feasibility of 3D T2* and dGEMRIC to identify various histologic grades of cartilage damage of humeral articular cartilage. With regard to the advantages of these mapping techniques with high image resolution and the ability to accomplish a 3D biochemically sensitive imaging, we consider that these imaging techniques can make a positive contribution to the currently evolving science and practice of cartilage biochemical imaging.


Asunto(s)
Enfermedades de los Cartílagos/diagnóstico , Cartílago Articular/patología , Imagen por Resonancia Magnética/métodos , Articulación del Hombro , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades de los Cartílagos/patología , Cartílago Articular/lesiones , Medios de Contraste , Gadolinio , Humanos , Imagenología Tridimensional/métodos , Persona de Mediana Edad , Adulto Joven
17.
Haematologica ; 100(5): 643-52, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25682594

RESUMEN

Natural killer cells are well known to mediate anti-leukemic responses in myeloid leukemia but their role in myelodysplastic syndromes is not well understood. Here, in a cohort of newly diagnosed patients (n=75), widespread structural and functional natural killer cell defects were identified. One subgroup of patients (13%) had a selective deficiency of peripheral natural killer cells (count <10/mm(3) blood) with normal frequencies of T and natural killer-like T cells. Natural killer cell-deficient patients were predominantly found in high-risk subgroups and deficiency of these cells was significantly associated with poor prognosis. In the second subgroup, comprising the majority of patients (76%), natural killer cells were present but exhibited poor cytotoxicity. The defect was strongly associated with reduced levels of perforin and granzyme B. Notably, natural killer cell function and arming of cytotoxic granules could be fully reconstituted by in vitro stimulation. Further phenotypic analysis of these patients revealed an immature natural killer cell compartment that was biased towards CD56(bright) cells. The residual CD56(dim) cells exhibited a significant increase of the unlicensed NKG2A(-)KIR(-) subset and a striking reduction in complexity of the repertoire of killer cell immunoglobulin-like receptors. Taken together, these results suggest that the widespread defects in natural killer cell function occurring in patients with myelodysplastic syndromes are mostly due to either unsuccessful or inefficient generation of mature, functionally competent natural killer cells, which might contribute to disease progression through impaired immune surveillance.


Asunto(s)
Diferenciación Celular , Citotoxicidad Inmunológica , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Síndromes Mielodisplásicos/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Inmunofenotipificación , Interleucina-2/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/mortalidad , Fenotipo , Pronóstico
18.
PLoS Comput Biol ; 10(4): e1003599, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24763223

RESUMEN

Myelodysplastic syndromes (MDS) are triggered by an aberrant hematopoietic stem cell (HSC). It is, however, unclear how this clone interferes with physiologic blood formation. In this study, we followed the hypothesis that the MDS clone impinges on feedback signals for self-renewal and differentiation and thereby suppresses normal hematopoiesis. Based on the theory that the MDS clone affects feedback signals for self-renewal and differentiation and hence suppresses normal hematopoiesis, we have developed a mathematical model to simulate different modifications in MDS-initiating cells and systemic feedback signals during disease development. These simulations revealed that the disease initiating cells must have higher self-renewal rates than normal HSCs to outcompete normal hematopoiesis. We assumed that self-renewal is the default pathway of stem and progenitor cells which is down-regulated by an increasing number of primitive cells in the bone marrow niche--including the premature MDS cells. Furthermore, the proliferative signal is up-regulated by cytopenia. Overall, our model is compatible with clinically observed MDS development, even though a single mutation scenario is unlikely for real disease progression which is usually associated with complex clonal hierarchy. For experimental validation of systemic feedback signals, we analyzed the impact of MDS patient derived serum on hematopoietic progenitor cells in vitro: in fact, MDS serum slightly increased proliferation, whereas maintenance of primitive phenotype was reduced. However, MDS serum did not significantly affect colony forming unit (CFU) frequencies indicating that regulation of self-renewal may involve local signals from the niche. Taken together, we suggest that initial mutations in MDS particularly favor aberrant high self-renewal rates. Accumulation of primitive MDS cells in the bone marrow then interferes with feedback signals for normal hematopoiesis--which then results in cytopenia.


Asunto(s)
Retroalimentación , Hematopoyesis , Síndromes Mielodisplásicos/metabolismo , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Humanos , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/fisiopatología
19.
PLoS One ; 8(8): e69488, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936332

RESUMEN

The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of the TatABC proteins in live E. coli cells, we have individually expressed fluorophore-tagged versions of each Tat protein in addition to a set of chromosomally encoded TatABC proteins. In this way, a Tat translocase could form from the native TatABC proteins and be visualized via the association of a fluorescent Tat variant. A functionally active TatA-green fluorescent protein fusion was found to re-locate from a uniform distribution in the membrane into a few clusters preferentially located at the cell poles. Clustering was absolutely dependent on the co-expression of functional Tat substrates, the proton-motive force, and the cognate TatBC subunits. Likewise, polar cluster formation of a functional TatB-mCherry fusion required TatA and TatC and that of a functional TatC-mCherry fusion a functional Tat substrate. Furthermore we directly demonstrate the co-localization of TatA and TatB in the same fluorescent clusters. Our collective results are consistent with distinct Tat translocation sites dynamically forming in vivo in response to newly synthesized Tat substrates.


Asunto(s)
Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Western Blotting , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Transporte de Proteínas , Fuerza Protón-Motriz
20.
Exp Hematol ; 41(9): 823-831.e2, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23660069

RESUMEN

Homing and engraftment of hematopoietic stem and progenitor cells (HSPCs) during bone marrow transplantation are critically dependent on integrins such as ß1-integrin. In the present study, we show that ß1-integrin and the tetraspanin CD63 form a cell surface receptor complex for the soluble serum protein tissue inhibitor of metalloproteinases-1 (TIMP-1) on human CD34⁺ HSPCs. Through binding to this receptor complex, TIMP-1 activates ß1-integrin, increases adhesion and migration of human CD34⁺ cells, and protects these cells from induced apoptosis. TIMP-1 stimulation in murine bone marrow mononuclear cells also promotes migration and adhesion; this is associated with augmented homing of murine mononuclear cells and of murine LSK⁺ cells during bone marrow transplantation. These results not only indicate that TIMP-1 is conducive to HSPC homing; they also identify CD63 and ß1-integrin as a TIMP-1 receptor complex on HSPCs.


Asunto(s)
Trasplante de Médula Ósea , Movimiento Celular , Supervivencia de Injerto , Células Madre Hematopoyéticas/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Adhesión Celular , Femenino , Humanos , Integrina beta1/metabolismo , Masculino , Ratones , Tetraspanina 30/metabolismo , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...