Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 117(5): 1222-1231, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423292

RESUMEN

PURPOSE: Stereotactic body radiation therapy for tumors near the central airways implies high-grade toxic effects, as concluded from the HILUS trial. However, the small sample size and relatively few events limited the statistical power of the study. We therefore pooled data from the prospective HILUS trial with retrospective data from patients in the Nordic countries treated outside the prospective study to evaluate toxicity and risk factors for high-grade toxic effects. METHODS AND MATERIALS: All patients were treated with 56 Gy in 8 fractions. Tumors within 2 cm of the trachea, the mainstem bronchi, the intermediate bronchus, or the lobar bronchi were included. The primary endpoint was toxicity, and the secondary endpoints were local control and overall survival. Clinical and dosimetric risk factors were analyzed for treatment-related fatal toxicity in univariable and multivariable Cox regression analyses. RESULTS: Of 230 patients evaluated, grade 5 toxicity developed in 30 patients (13%), of whom 20 patients had fatal bronchopulmonary bleeding. The multivariable analysis revealed tumor compression of the tracheobronchial tree and maximum dose to the mainstem or intermediate bronchus as significant risk factors for grade 5 bleeding and grade 5 toxicity. The 3-year local control and overall survival rates were 84% (95% CI, 80%-90%) and 40% (95% CI, 34%-47%), respectively. CONCLUSIONS: Tumor compression of the tracheobronchial tree and high maximum dose to the mainstem or intermediate bronchus increase the risk of fatal toxicity after stereotactic body radiation therapy in 8 fractions for central lung tumors. Similar dose constraints should be applied to the intermediate bronchus as to the mainstem bronchi.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias Pulmonares/patología , Bronquios/efectos de la radiación , Factores de Riesgo , Radiocirugia/efectos adversos , Radiocirugia/métodos
2.
Biochem J ; 475(4): 749-758, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339464

RESUMEN

Propionic acidemia is the accumulation of propionate in blood due to dysfunction of propionyl-CoA carboxylase. The condition causes lethargy and striatal degeneration with motor impairment in humans. How propionate exerts its toxic effect is unclear. Here, we show that intravenous administration of propionate causes dose-dependent propionate accumulation in the brain and transient lethargy in mice. Propionate, an inhibitor of histone deacetylase, entered GABAergic neurons, as could be seen from increased neuronal histone H4 acetylation in the striatum and neocortex. Propionate caused an increase in GABA (γ-amino butyric acid) levels in the brain, suggesting inhibition of GABA breakdown. In vitro propionate inhibited GABA transaminase with a Ki of ∼1 mmol/l. In isolated nerve endings, propionate caused increased release of GABA to the extracellular fluid. In vivo, propionate reduced cerebral glucose metabolism in both striatum and neocortex. We conclude that propionate-induced inhibition of GABA transaminase causes accumulation of GABA in the brain, leading to increased extracellular GABA concentration, which inhibits neuronal activity and causes lethargy. Propionate-mediated inhibition of neuronal GABA transaminase, an enzyme of the inner mitochondrial membrane, indicates entry of propionate into neuronal mitochondria. However, previous work has shown that neurons are unable to metabolize propionate oxidatively, leading us to conclude that propionyl-CoA synthetase is probably absent from neuronal mitochondria. Propionate-induced inhibition of energy metabolism in GABAergic neurons may render the striatum, in which >90% of the neurons are GABAergic, particularly vulnerable to degeneration in propionic acidemia.


Asunto(s)
4-Aminobutirato Transaminasa/antagonistas & inhibidores , Neuronas GABAérgicas/efectos de los fármacos , Letargia/metabolismo , Propionatos/administración & dosificación , Acidemia Propiónica/metabolismo , 4-Aminobutirato Transaminasa/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Neuronas GABAérgicas/metabolismo , Glucosa/metabolismo , Inhibidores de Histona Desacetilasas/administración & dosificación , Histona Desacetilasas , Humanos , Letargia/inducido químicamente , Letargia/fisiopatología , Metilmalonil-CoA Descarboxilasa/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Neocórtex/patología , Acidemia Propiónica/inducido químicamente , Acidemia Propiónica/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
3.
J Neurochem ; 133(4): 572-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25708447

RESUMEN

Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was expressed too. Neocortical cells also took up and metabolized glyceraldehyde oxidatively.


Asunto(s)
Fructosa/metabolismo , Neocórtex/citología , Neuronas/metabolismo , Sinaptosomas/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Aminoácidos/metabolismo , Animales , Isótopos de Carbono/metabolismo , Fructoquinasas , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Gliceraldehído/metabolismo , Hexoquinasa/metabolismo , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Masculino , Redes y Vías Metabólicas , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...