Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 12(4): e0049021, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34340550

RESUMEN

The marine lithospheric subsurface is one of the largest biospheres on Earth; however, little is known about the identity and ecological function of microorganisms found in low abundance in this habitat, though these organisms impact global-scale biogeochemical cycling. Here, we describe the diversity and metabolic potential of sediment and endolithic (within rock) microbial communities found in ultrasmall amounts (101 to 104 cells cm-3) in the subsurface of the Atlantis Massif, an oceanic core complex on the Mid-Atlantic Ridge that was sampled on International Ocean Discovery Program (IODP) Expedition 357. This study used fluorescence-activated cell sorting (FACS) to enable the first amplicon, metagenomic, and single-cell genomic study of the shallow (<20 m below seafloor) subsurface of an actively serpentinizing marine system. The shallow subsurface biosphere of the Atlantis Massif was found to be distinct from communities observed in the nearby Lost City alkaline hydrothermal fluids and chimneys, yet similar to other low-temperature, aerobic subsurface settings. Genes associated with autotrophy were rare, although heterotrophy and aerobic carbon monoxide and formate cycling metabolisms were identified. Overall, this study reveals that the shallow subsurface of an oceanic core complex hosts a biosphere that is not fueled by active serpentinization reactions and by-products. IMPORTANCE The subsurface rock beneath the ocean is one of the largest biospheres on Earth, and microorganisms within influence global-scale nutrient cycles. This biosphere is difficult to study, in part due to the low concentrations of microorganisms that inhabit the vast volume of the marine lithosphere. In spite of the global significance of this biosphere, little is currently known about the microbial ecology of such rock-associated microorganisms. This study describes the identity and genomic potential of microorganisms in the subsurface rock and sediment at the Atlantis Massif, an underwater mountain near the Mid-Atlantic Ridge. To enable our analyses, fluorescence-activated cell sorting (FACS) was used as a means to concentrate cells from low biomass environmental samples for genomic analyses. We found distinct rock-associated microorganisms and found that the capacity for microorganisms to utilize organic carbon was the most prevalent form of carbon cycling. We additionally identified a potential role for carbon monoxide metabolism in the subsurface.


Asunto(s)
Sedimentos Geológicos/microbiología , Microbiota/genética , Océanos y Mares , Genómica
2.
Geobiology ; 11(6): 570-92, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24118888

RESUMEN

Samples of young, outer surfaces of brucite-carbonate deposits from the ultramafic-hosted Lost City hydrothermal field were analyzed for DNA and lipid biomarker distributions and for carbon and hydrogen stable isotope compositions of the lipids. Methane-cycling archaeal communities, notably the Lost City Methanosarcinales (LCMS) phylotype, are specifically addressed. Lost City is unlike all other hydrothermal systems known to date and is characterized by metal- and CO2 -poor, high pH fluids with high H2 and CH4 contents resulting from serpentinization processes at depth. The archaeal fraction of the microbial community varies widely within the Lost City chimneys, from 1-81% and covaries with concentrations of hydrogen within the fluids. Archaeal lipids include isoprenoid glycerol di- and tetraethers and C25 and C30 isoprenoid hydrocarbons (pentamethylicosane derivatives - PMIs - and squalenoids). In particular, unsaturated PMIs and squalenoids, attributed to the LCMS archaea, were identified for the first time in the carbonate deposits at Lost City and probably record processes exclusively occurring at the surface of the chimneys. The carbon isotope compositions of PMIs and squalenoids are remarkably heterogeneous across samples and show highly (13) C-enriched signatures reaching δ(13) C values of up to +24.6‰. Unlike other environments in which similar structural and isotopic lipid heterogeneity has been observed and attributed to diversity in the archaeal assemblage, the lipids here appear to be synthesized solely by the LCMS. Some of the variations in lipid isotope signatures may, in part, be due to unusual isotopic fractionation during biosynthesis under extreme conditions. However, we argue that the diversity in archaeal abundances, lipid structure and carbon isotope composition rather reflects the ability of the LCMS archaeal biofilms to adapt to chemical gradients in the hydrothermal chimneys and possibly to perform either methanotrophy or methanogenesis using dissolved inorganic carbon, methane or formate as a function of the prevailing environmental conditions.


Asunto(s)
Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biota , Manantiales de Aguas Termales/microbiología , Archaea/metabolismo , Bacterias/metabolismo , Carbono/análisis , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Hidrógeno/análisis , Lípidos/análisis , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Geobiology ; 11(2): 154-69, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23346942

RESUMEN

The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City.


Asunto(s)
Aminoácidos/análisis , Respiraderos Hidrotermales/química , Nitrógeno/análisis , Asbestos Serpentinas/metabolismo , Océano Atlántico , Carbono/análisis , Crecimiento Quimioautotrófico , Respiraderos Hidrotermales/microbiología , Fijación del Nitrógeno
4.
Geobiology ; 10(6): 548-61, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23006788

RESUMEN

Hydrothermal vent systems harbor rich microbial communities ranging from aerobic mesophiles to anaerobic hyperthermophiles. Among these, members of the archaeal domain are prevalent in microbial communities in the most extreme environments, partly because of their temperature-resistant and robust membrane lipids. In this study, we use geochemical and molecular microbiological methods to investigate the microbial diversity in black smoker chimneys from the newly discovered Loki's Castle hydrothermal vent field on the Arctic Mid-Ocean Ridge (AMOR) with vent fluid temperatures of 310-320 °C and pH of 5.5. Archaeal glycerol dialkyl glycerol tetraether lipids (GDGTs) and H-shaped GDGTs with 0-4 cyclopentane moieties were dominant in all sulfide samples and are most likely derived from both (hyper)thermophilic Euryarchaeota and Crenarchaeota. Crenarchaeol has been detected in low abundances in samples derived from the chimney exterior indicating the presence of Thaumarchaeota at lower ambient temperatures. Aquificales and members of the Epsilonproteobacteria were the dominant bacterial groups detected. Our observations based on the analysis of 16S rRNA genes and biomarker lipid analysis provide insight into microbial communities thriving within the porous sulfide structures of active and inactive deep-sea hydrothermal vents. Microbial cycling of sulfur, hydrogen, and methane by archaea in the chimney interior and bacteria in the chimney exterior may be the prevailing biogeochemical processes in this system.


Asunto(s)
Biota , Respiraderos Hidrotermales/microbiología , Regiones Árticas , Océano Atlántico , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Calor , Concentración de Iones de Hidrógeno , Lípidos/análisis , Filogenia , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
5.
Nature ; 412(6843): 145-9, 2001 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-11449263

RESUMEN

Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.


Asunto(s)
Sedimentos Geológicos , Microbiología del Agua , Océano Atlántico , Evolución Química , Biología Marina , Minerales , Origen de la Vida , Agua de Mar , Temperatura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...