Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2015): 20231614, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38264782

RESUMEN

Our ability to assess biodiversity at relevant spatial and temporal scales for informing management is of increasing importance given this is foundational to identify and mitigate the impacts of global change. Collecting baseline information and tracking ecological changes are particularly important for areas experiencing rapid changes and representing data gaps such as Arctic marine ecosystems. Environmental DNA has the potential to provide such data. We extracted environmental DNA from 90 surface sediment samples to assess eukaryote diversity around Greenland and Svalbard using two separate primer pairs amplifying different sections of the 18S rRNA gene. We detected 27 different phyla and 99 different orders and found that temperature and the change in temperature explained the most variation in the community in a single linear model, while latitude, sea ice cover and change in temperature explained the most variation in the community when assessed by individual non-linear models. We identified potential indicator taxa for Arctic climate change, including a terebellid annelid worm. In conclusion, our study demonstrates that environmental DNA offers a feasible method to assess biodiversity and identifies warming as a key driver of differences in biodiversity across these remote ecosystems.


Asunto(s)
ADN Ambiental , Ecosistema , Biodiversidad , Clima , Sedimentos Geológicos
2.
Front Microbiol ; 12: 637811, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995296

RESUMEN

The analysis of benthic bacterial community structure has emerged as a powerful alternative to traditional microscopy-based taxonomic approaches to monitor aquaculture disturbance in coastal environments. However, local bacterial diversity and community composition vary with season, biogeographic region, hydrology, sediment texture, and aquafarm-specific parameters. Therefore, without an understanding of the inherent variation contained within community complexes, bacterial diversity surveys conducted at individual farms, countries, or specific seasons may not be able to infer global universal pictures of bacterial community diversity and composition at different degrees of aquaculture disturbance. We have analyzed environmental DNA (eDNA) metabarcodes (V3-V4 region of the hypervariable SSU rRNA gene) of 138 samples of different farms located in different major salmon-producing countries. For these samples, we identified universal bacterial core taxa that indicate high, moderate, and low aquaculture impact, regardless of sampling season, sampled country, seafloor substrate type, or local farming and environmental conditions. We also discuss bacterial taxon groups that are specific for individual local conditions. We then link the metabolic properties of the identified bacterial taxon groups to benthic processes, which provides a better understanding of universal benthic ecosystem function(ing) of coastal aquaculture sites. Our results may further guide the continuing development of a practical and generic bacterial eDNA-based environmental monitoring approach.

3.
Mol Ecol ; 30(13): 2937-2958, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32416615

RESUMEN

A decade after environmental scientists integrated high-throughput sequencing technologies in their toolbox, the genomics-based monitoring of anthropogenic impacts on the biodiversity and functioning of ecosystems is yet to be implemented by regulatory frameworks. Despite the broadly acknowledged potential of environmental genomics to this end, technical limitations and conceptual issues still stand in the way of its broad application by end-users. In addition, the multiplicity of potential implementation strategies may contribute to a perception that the routine application of this methodology is premature or "in development", hence restraining regulators from binding these tools into legal frameworks. Here, we review recent implementations of environmental genomics-based methods, applied to the biomonitoring of ecosystems. By taking a general overview, without narrowing our perspective to particular habitats or groups of organisms, this paper aims to compare, review and discuss the strengths and limitations of four general implementation strategies of environmental genomics for monitoring: (a) Taxonomy-based analyses focused on identification of known bioindicators or described taxa; (b) De novo bioindicator analyses; (c) Structural community metrics including inferred ecological networks; and (d) Functional community metrics (metagenomics or metatranscriptomics). We emphasise the utility of the three latter strategies to integrate meiofauna and microorganisms that are not traditionally utilised in biomonitoring because of difficult taxonomic identification. Finally, we propose a roadmap for the implementation of environmental genomics into routine monitoring programmes that leverage recent analytical advancements, while pointing out current limitations and future research needs.


Asunto(s)
Ecosistema , Metagenómica , Biodiversidad , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente
4.
Mol Ecol ; 30(13): 2988-3006, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32285497

RESUMEN

Increasing anthropogenic impact and global change effects on natural ecosystems has prompted the development of less expensive and more efficient bioassessments methodologies. One promising approach is the integration of DNA metabarcoding in environmental monitoring. A critical step in this process is the inference of ecological quality (EQ) status from identified molecular bioindicator signatures that mirror environmental classification based on standard macroinvertebrate surveys. The most promising approaches to infer EQ from biotic indices (BI) are supervised machine learning (SML) and the calculation of indicator values (IndVal). In this study we compared the performance of both approaches using DNA metabarcodes of bacteria and ciliates as bioindicators obtained from 152 samples collected from seven Norwegian salmon farms. Results from standard macroinvertebrate-monitoring of the same samples were used as reference to compare the accuracy of both approaches. First, SML outperformed the IndVal approach to infer EQ from eDNA metabarcodes. The Random Forest (RF) algorithm appeared to be less sensitive to noisy data (a typical feature of massive environmental sequence data sets) and uneven data coverage across EQ classes (a typical feature of environmental compliance monitoring scheme) compared to a widely used method to infer IndVals for the calculation of a BI. Second, bacteria allowed for a more accurate EQ assessment than ciliate eDNA metabarcodes. For the implementation of DNA metabarcoding into routine monitoring programmes to assess EQ around salmon aquaculture cages, we therefore recommend bacterial DNA metabarcodes in combination with SML to classify EQ categories based on molecular signatures.


Asunto(s)
Ecosistema , Salmón , Animales , Acuicultura , Biodiversidad , Código de Barras del ADN Taxonómico , Ambiente , Monitoreo del Ambiente , Noruega , Salmón/genética , Aprendizaje Automático Supervisado
5.
Mar Pollut Bull ; 127: 139-149, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29475645

RESUMEN

We evaluated benthic bacterial communities as bioindicators in environmental impact assessments of salmon aquaculture, a rapidly growing sector of seafood industry. Sediment samples (n=72) were collected from below salmon cages towards distant reference sites. Bacterial community profiles inferred from DNA metabarcodes were compared to reference data from standard macrofauna biomonitoring surveys of the same samples. Deltaproteobacteria were predominant in immediate vicinity of the salmon cages. Along the transect, significant shifts in bacterial community structures were observed with Gammaproteobacteria dominating the less-impacted sites. Alpha- and beta-diversity measures of bacterial communities correlated significantly with macrofauna diversity metrics and with five ecological status indices. Benthic bacterial communities mirror the reaction of macrofauna bioindicators to environmental disturbances caused by salmon farming. The implementation of bacterial eDNA metabarcoding in future Strategic Framework Directives is an alternative cost-effective high-throughput biomonitoring solution, providing a basis for management strategies in a matter of days rather than months.


Asunto(s)
Acuicultura , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/microbiología , Proteobacteria/genética , Salmón/crecimiento & desarrollo , Animales , Biodiversidad , Noruega , Proteobacteria/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...