Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37754857

RESUMEN

The main purpose of these studies was to obtain carbon-carbon composites with a core built of carbon fibers and a matrix in the form of pyrolytic carbon (PyC), obtained by using the chemical vapor deposition (CVD) method with direct electrical heating of a bundle of carbon fibers as a potential electrode material for nerve tissue stimulation. The methods used for the synthesis of PyC proposed in this paper allow us, with the appropriate selection of parameters, to obtain reproducible composites in the form of rods with diameters of about 300 µm in 120 s (CF_PyC_120). To evaluate the materials, various methods such as scanning electron microscopy (SEM), scanning transmission electron microscope (STEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and tensiometer techniques were used to study their microstructural, structural, chemical composition, surface morphology, and surface wettability. Assessing their applicability for contact with nervous tissue cells, the evaluation of cytotoxicity and biocompatibility using the SH-SY5Y human neuroblastoma cell line was performed. Viability and cytotoxicity tests (WST-1 and LDH release) along with cell morphology examination demonstrated that the CF_PyC_120 composites showed high biocompatibility compared to the reference sample (Pt wire), and the best adhesion of cells to the surface among all tested materials.

2.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35682956

RESUMEN

The main aim of this study is to investigate the effect of fragmentation of electrospun carbon nanofibers (eCNFs) obtained at different temperatures, i.e., at 750 °C, 1000 °C, 1500 °C, 1750 °C and 2000 °C on the cellular response in vitro. In order to assess the influence of nanofibers on biological response, it was necessary to conduct physicochemical, microstructural and structural studies such as SEM, XPS, Raman spectroscopy, HRTEM and surface wettability of the obtained materials. During the in vitro study, all samples made contact with the human chondrocyte CHON-001 cell lines. The key study was to assess the genotoxicity of eCNFs using the comet test after 1 h or 24 h. Special attention was paid to the degree of crystallinity of the nanofibers, the dimensions of the degradation products and the presence of functional groups on their surface. A detailed analysis showed that the key determinant of the genotoxic effect is the surface chemistry. The presence of nitrogen-containing groups as a product of the decomposition of nitrile groups has an influence on the biological response, leading to mutations in the DNA. This effect was observed only for samples carbonized at lower temperatures, i.e., 750 °C and 1000 °C. These results are important with respect to selecting the temperature of thermal treatment of eCNFs dedicated for medical and environmental functions due to the minimization of the genotoxic effect of these materials.


Asunto(s)
Nanofibras , Carbono , Calor , Humanos , Nanofibras/química , Temperatura , Humectabilidad
3.
Materials (Basel) ; 14(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34771898

RESUMEN

The goal of this study is to investigate the influence of different types of modifiers, such as sodium hyaluronate (NaH), graphene oxide (GO), silica oxycarbide (SiOC) and oxidation process (ox) on physicochemical, morphological, and biological properties of electrospun carbon nanofibers (eCNFs). Scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectroscopy (FTIR) were used to evaluate the microstructure and chemistry of as-prepared and modified CNFs. The electrical properties of CNFs scaffolds were examined using a four-point probe method to evaluate the influence of modifiers on the volume conductivity and surface resistivity of the obtained samples. The wettability of the surfaces of modified and unmodified CNFs scaffolds was also tested by contact angle measurement. During the in vitro study all samples were put into direct contact with human chondrocyte CHON-001 cells and human osteosarcoma MG-63 cells. Their viability was analysed after 72 h in culture. Moreover, the cell morphology and cell area in contact with CNFs was observed by means of fluorescence microscopy. The obtained results show great potential for the modification of CNFs with polymer, ceramic and carbon modifiers, which do not change the fiber form of the substrate but significantly affect their surface and volume properties. Preliminary biological studies have shown that the type of modification of CNFs affects either the rate of increase in the number of cells or the degree of spreading in relation to the unmodified sample. More hydrophilic and low electrically conductive samples such as CNF_ox and CNF_NaH significantly increase cell proliferation, while other GO and SiOC modified samples have an effect on cell adhesion and thus cell spreading. From the point of view of further research and the possibility of combining the electrical properties of modified CNF scaffolds with electrical stimulation, where these scaffolds would be able to transport electrical signals to cells and thus affect cell adhesion, spreading, and consequently tissue regeneration, samples CNF_GO and CNF_SiOC would be the most desirable.

4.
Materials (Basel) ; 14(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34361363

RESUMEN

In this work, we present a comparative study of the impact of secondary carbon nanofillers on the electrical and thermal conductivity, thermal stability, and mechanical properties of hybrid conductive polymer composites (CPC) based on high loadings of synthetic graphite and epoxy resin. Two different carbon nanofillers were chosen for the investigation-low-cost multi-layered graphene nanoplatelets (GN) and carbon black (CB), which were aimed at improving the overall performance of composites. The samples were obtained by a simple, inexpensive, and effective compression molding technique, and were investigated by the means of, i.a., scanning electron microscopy, Raman spectroscopy, electrical conductivity measurements, laser flash analysis, and thermogravimetry. The tests performed revealed that, due to the exceptional electronic transport properties of GN, its relatively low specific surface area, good aspect ratio, and nanometric sizes of particles, a notable improvement in the overall characteristics of the composites (best results for 4 wt % of GN; σ = 266.7 S cm-1; λ = 40.6 W mK-1; fl. strength = 40.1 MPa). In turn, the addition of CB resulted in a limited improvement in mechanical properties, and a deterioration in electrical and thermal properties, mainly due to the too high specific surface area of this nanofiller. The results obtained were compared with US Department of Energy recommendations regarding properties of materials for bipolar plates in fuel cells. As shown, the materials developed significantly exceed the recommended values of the majority of the most important parameters, indicating high potential application of the composites obtained.

5.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825046

RESUMEN

The combination of induced pluripotent stem cell (iPSC) technology and 3D cell culture creates a unique possibility for the generation of organoids that mimic human organs in in vitro cultures. The use of iPS cells in organoid cultures enables the differentiation of cells into dopaminergic neurons, also found in the human midbrain. However, long-lasting organoid cultures often cause necrosis within organoids. In this work, we present carbon fibers (CFs) for medical use as a new type of scaffold for organoid culture, comparing them to a previously tested copolymer poly-(lactic-co-glycolic acid) (PLGA) scaffold. We verified the physicochemical properties of CF scaffolds compared to PLGA in improving the efficiency of iPSC differentiation within organoids. The physicochemical properties of carbon scaffolds such as porosity, microstructure, or stability in the cellular environment make them a convenient material for creating in vitro organoid models. Through screening several genes expressed during the differentiation of organoids at crucial brain stages of development, we found that there is a correlation between PITX3, one of the key regulators of terminal differentiation, and the survival of midbrain dopaminergic (mDA) neurons and tyrosine hydroxylase (TH) gene expression. This makes organoids formed on carbon scaffolds an improved model containing mDA neurons convenient for studying midbrain-associated neurodegenerative diseases such as Parkinson's disease.


Asunto(s)
Fibra de Carbono/química , Células Madre Pluripotentes Inducidas/citología , Mesencéfalo/citología , Organoides/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Resinas Acrílicas/química , Diferenciación Celular , Células Cultivadas , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/efectos adversos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
6.
Micron ; 130: 102816, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31884201

RESUMEN

The work presents a new carbon nanostructure in the form of stacked toroidal carbon nanotubes (STCNT) crystallized from the gas phase through a catalyst-free deposition process. Vapor-grown STCNT were obtained on a graphite substrate using methane as a source of carbon. The carbon structure was analyzed using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDX), Raman spectroscopy, X-ray Diffraction and X-ray photoelectron spectroscopy. The TEM images revealed that the nanostructured carbon phase consisted of a single toroidal element (toroid) that was composed of rolled multi-walled carbon nanotubes. The SEM/EDX study of different substrate sites showed the presence of the pure carbon structure. The average external diameter of a single toroid was 1000 nm, and the average distance between neighboring toroids was 100 nm. The space inside the toroids contained carbon spheres made of turbostratic crystallites.

7.
J Nanopart Res ; 18: 56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941564

RESUMEN

The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.

8.
Acta Bioeng Biomech ; 17(3): 49-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26687734

RESUMEN

PURPOSE: Preventing the formation of blood clots on the surface of biomaterials and investigation of the reasons of their formation are the leading topics of the research and development of biomaterials for implants placed into the bloodstream. Biocompatibility and stability of a material in body fluids and direct effect on blood cell counts components are related both to the structure and physico-chemical state of an implant surface. The aim of this study was to determine haemocompatibility and cytotoxicity of polysulfone-based samples containing nano and micro particles of magnetite (Fe3O4). METHODS: The polysulfone-based samples modified with nanometric and micrometric magnetite particles were examined. Physicochemical properties of the composites were determined by testing their wettability and surface roughness. The action of haemolytic, activation of coagulation system and cytotoxicity of composites was evaluated. RESULTS: Wettability and roughness of materials were correlated with nanoparticles and microparticles content. In the tests of plasma coagulation system shortening of activated partial thromboplastin time for polysulfone with nano magnetite and with micro magnetite particles was observed in comparison with pure polysulfone. Prothrombine time and thrombine time values as well as fibrinogen concentration were unchanged. Haemolysis values were normal. Morphology and viability of cells were normal. CONCLUSIONS: Composites made from polysulfone modified with nanoparticles and microparticles of magnetite cause neither haemolytic nor cytotoxic reaction. These composites evoke plasma endogenous system activation.


Asunto(s)
Materiales Biocompatibles/farmacología , Fenómenos Magnéticos , Ensayo de Materiales/métodos , Metales/farmacología , Nanopartículas/química , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Óxido Ferrosoférrico/química , Fibrinógeno/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Ratones , Nanopartículas/ultraestructura , Tiempo de Tromboplastina Parcial , Polímeros , Sulfonas
9.
J Mater Sci Mater Med ; 26(11): 262, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26464119

RESUMEN

Coating the material with a layer of carbon nanotubes (CNTs) has been a subject of particular interest for the development of new biomaterials. Such coatings, made of properly selected CNTs, may constitute an implantable electronic device that facilitates tissue regeneration both by specific surface properties and an ability to electrically stimulate the cells. The goal of the presented study was to produce, evaluate physicochemical properties and test the applicability of highly conductible material designed as an implantable electronic device. Two types of CNTs with varying level of oxidation were chosen. The process of coating involved suspension of the material of choice in the diluent followed by the electrophoretic deposition to fabricate layers on the surface of a highly biocompatible metal-titanium. Presented study includes an assessment of the physicochemical properties of the material's surface along with an electrochemical evaluation and in vitro biocompatibility, cytotoxicity and apoptosis studies in contact with the murine fibroblasts (L929) in attempt to answer the question how the chemical composition and CNTs distribution in the layer alters the electrical properties of the sample and whether any of these properties have influenced the overall biocompatibility and stimulated adhesion of fibroblasts. The results indicate that higher level of oxidation of CNTs yielded materials more conductive than the metal they are deposited on. In vitro study revealed that both materials were biocompatible and that the cells were not affected by the amount of the functional group and the morphology of the surface they adhered to.


Asunto(s)
Nanotubos de Carbono , Animales , Línea Celular , Fibroblastos/citología , Técnicas In Vitro , Ratones , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Humectabilidad
10.
Mater Sci Eng C Mater Biol Appl ; 46: 218-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25491980

RESUMEN

The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs), before and after chemical surface functionalization on muscle cell response in vitro and in vivo conditions. Prior to biological tests the surface physicochemical properties of the carbon nanotubes (CNTs) deposited on a polymer membrane were investigated. To 'evaluate microstructure and structure of CNTs scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR) were used. During in vitro study CNTs deposited on polymer membrane were contacted directly with myoblast cells, and after 7 days of culture cytotoxicity of samples was analyzed. Moreover, cell morphology in contact with CNTs was observed using SEM and fluorescence microscopy. The cytotoxicity of CNTs modified in a different way was comparable and significantly lower in comparison with pure polymer membrane. Microscopy analysis of cultured myoblasts confirms intense cell proliferation of all investigated samples with CNTs while for two kinds of CNTs myoblasts' differentiation into myotubes was observed. Histochemical reactions for the activity of enzymes such as acid phosphatase, cytochrome C oxidase, and non-specific esterase allowed the analysis of the extent of inflammation, degree of regeneration process of the muscle fibers resulting from the presence of the satellite cells and the neuromuscular junction on muscle fibers in contact with CNTs after implantation of CNTs into gluteal muscle of rat.


Asunto(s)
Músculos/citología , Nanotubos de Carbono , Animales , Línea Celular , Ratones , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Espectroscopía Infrarroja por Transformada de Fourier
11.
Mater Sci Eng C Mater Biol Appl ; 34: 35-49, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24268231

RESUMEN

Nanotechnology offers new perspectives in the field of innovative medicine, especially for reparation and regeneration of irreversibly damaged or diseased nerve tissues due to lack of effective self-repair mechanisms in the peripheral and central nervous systems (PNS and CNS, respectively) of the human body. Carbon nanomaterials, due to their unique physical, chemical and biological properties, are currently considered as promising candidates for applications in regenerative medicine. This chapter discusses the potential applications of various carbon nanomaterials including carbon nanotubes, nanofibers and graphene for regeneration and stimulation of nerve tissue, as well as in drug delivery systems for nerve disease therapy.


Asunto(s)
Carbono/farmacología , Nanoestructuras/química , Regeneración Nerviosa/efectos de los fármacos , Tejido Nervioso/efectos de los fármacos , Tejido Nervioso/fisiología , Animales , Materiales Biocompatibles/farmacología , Humanos , Tejido Nervioso/ultraestructura
12.
J Nanopart Res ; 14(10): 1181, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23087595

RESUMEN

The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10-30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment-material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

13.
J Mater Sci ; 46(17): 5680-5689, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-36039071

RESUMEN

The use of carbon nanohorns (SWCNHs) as a modifying filler in a polyacrylonitrile (PAN) matrix is studied with the goal of elaborating nanocomposites. The study deals with assessment of the dispersity of SWCNHs in a PAN polymer suspension. The SWCNHs were introduced into the PAN-based suspension using different methods, including mechanical stirring, ultrasonification and the combination of ultrasonification with addition of a surfactant. Agglomeration and dispersion processes of SWCNH in the polymer suspensions were studied using DLS technique and turbidimetry. The resulting properties of nanocomposite foils after solidification in water ambient were verified in various tests. The mechanical tensile properties (tensile strength, modulus and strain to fracture) of the nanocomposites before and after the dispersion process were compared. The nanocomposites obtained under optimally prepared suspension perform the highest strain to fracture in tensile test. Electrical resistivity and thermal conductivity of nanocomposites samples after appropriate dispersion of SWCNHs in the PAN suspension were also determined. The presence of SWCNH in the PAN suspension affects the structure of nanocomposites after solidification through changing structural ordering of the polymer. The study revealed that the polymeric suspensions prepared in optimum processing conditions contain the carbon aggregates the size of which correspond almost to the mean size of a dahlia flower-like structured particle, i.e., 50-250 nm and it was not possible to separate such particles into a single form of carbon nanohorn by the techniques used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...