Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37848250

RESUMEN

Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.

2.
Glia ; 69(7): 1679-1693, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33683746

RESUMEN

Muller glial cells (MGCs) are responsible for the homeostatic and metabolic support of the retina. Despite the importance of MGCs in retinal disorders, reliable and accessible human cell sources to be used to model MGC-associated diseases are lacking. Although primary human MGCs (pMGCs) can be purified from post-mortem retinal tissues, the donor scarcity limits their use. To overcome this problem, we developed a protocol to generate and bank human induced pluripotent stem cell-derived MGCs (hiMGCs). Using a transcriptome analysis, we showed that the three genetically independent hiMGCs generated were homogeneous and showed phenotypic characteristics and transcriptomic profile of pMGCs. These cells expressed key MGC markers, including Vimentin, CLU, DKK3, SOX9, SOX2, S100A16, ITGB1, and CD44 and could be cultured up to passage 8. Under our culture conditions, hiMGCs and pMGCs expressed low transcript levels of RLPB1, AQP4, KCNJ1, KCJN10, and SLC1A3. Using a disease modeling approach, we showed that hiMGCs could be used to model the features of diabetic retinopathy (DR)-associated dyslipidemia. Indeed, palmitate, a major free fatty acid with elevated plasma levels in diabetic patients, induced the expression of inflammatory cytokines found in the ocular fluid of DR patients such as CXCL8 (IL-8) and ANGPTL4. Moreover, the analysis of palmitate-treated hiMGC secretome showed an upregulation of proangiogenic factors strongly related to DR, including ANG2, Endoglin, IL-1ß, CXCL8, MMP-9, PDGF-AA, and VEGF. Thus, hiMGCs could be an alternative to pMGCs and an extremely valuable tool to help to understand and model glial cell involvement in retinal disorders, including DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Células Madre Pluripotentes Inducidas , Diabetes Mellitus/metabolismo , Células Ependimogliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuroglía/metabolismo , Retina
3.
Biosens Bioelectron ; 167: 112469, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32862069

RESUMEN

In this paper, we present a method to assess growth and maturation phases of the Retinal Pigment Epithelium (RPE) in-vitro at the cell layer level using impedance spectroscopy measurements on platinum electrodes. We extracted relevant parameters from an electrical circuit model fitted with the measured spectra. Based on microscopic imaging, the growth state of an independent culture developing in the same conditions is used as reference. We show that the confluence point is identified from a graphical analysis of the spectra transition as well as by observing a reconstructed parameter representing the average capacitance of the cell layer. More generally, this work presents a detailed investigation on how cell culture's state relates with either model parameter analysis or with graphical analysis of the measured spectra over a wide frequency band. While applied to the RPE, this work is also suitable for the study of any kind of monolayer epithelial cells growth.


Asunto(s)
Técnicas Biosensibles , Espectroscopía Dieléctrica , Recuento de Células , Células Cultivadas , Epitelio Pigmentado de la Retina , Pigmentos Retinianos
4.
Biosens Bioelectron ; 161: 112180, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32365009

RESUMEN

In age-related macular degeneration, the retinal pigment epithelium can be damaged by light acting on photosensitizers like N-retinylidene-N-retinylethanolamine (A2E). In this paper, the underlying cellular mechanism of lesion at the cell layer scale is analyzed by impedance spectroscopy. Retinal pigment epithelium (RPE) cells are cultured on top of custom-made electrodes capable of taking impedance measurements, with the help of a custom-made electronic setup but without the use of any chemical markers. An incubator is used to house the cells growing on the electrodes. An electrical model circuit is presented and linked to the constituents of the cell layer in which various electrical elements have been defined including a constant phase element (CPE) associated to the interface between the cell layer and the electrolyte. Their values are extracted from the fitted model of the measured impedance spectra. In this paper, we first investigate which parameters of the model can be analyzed independently. In that way, the parameter's evolution is examined with respect to two different targeted changes of the epithelium: 1. degradation of tight junctions between cells by extracellular calcium sequestration with Ethylenediaminetetraacetic acid (EDTA); 2. application of high amplitude short length electric field pulses. Based on the results obtained showing a clear relation between the model and the physiological state of the cell layer, the same procedure is applied to blue light exposure experiment. When A2E-loaded cells are exposed to blue light, the model parameters indicate, as expected, a clear degradation of the cell layer opposed to a relative stability of the not loaded ones.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas de Cultivo de Célula/métodos , Epitelio Pigmentado de la Retina/efectos de la radiación , Retinoides/farmacología , Espectroscopía Dieléctrica , Humanos , Luz , Epitelio Pigmentado de la Retina/química
5.
Adv Exp Med Biol ; 975 Pt 2: 687-701, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849492

RESUMEN

Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases, either as a primary process like in glaucoma, or secondary to photoreceptor loss and no efficient compound targeting directly RGC neuroprotection is yet available. We previously described that taurine exerts a direct protective effect on RGCs cultured under serum-deprived conditions. Because taurine was known to have an agonist-like activity for GABA/glycine receptors, we investigated here if the taurine-elicited neuroprotective effect may be mediated through the activation of these receptors using selective antagonist ligands. RGCs were purified, seeded in 96-well plate and maintained in culture during 6 days in vitro. Viable cells were labelled with calcein and densities in full-well area were then automatically counted. Here we show that the protective effect of taurine against RGC loss observed under serum deprivation can be mediated through the GABAB receptor stimulation. Hence, two selective agonists, including baclofen, at this metabotropic GABAB receptor were found to reproduce taurine action by enhancing RGC survival in culture. This study suggests that GABAB receptor stimulation provides direct neuroprotection for RGCs. Accordingly, drugs targeting GABAB receptor may represent a new way for the prevention of RGC degeneration.


Asunto(s)
Agonistas de Receptores GABA-B/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de GABA-B/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Taurina/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Masculino , Ratas , Ratas Long-Evans , Receptores de GABA-B/metabolismo , Células Ganglionares de la Retina/metabolismo
6.
Stem Cell Res Ther ; 6: 177, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377305

RESUMEN

INTRODUCTION: Glaucoma is a sight-threatening retinal neuropathy associated with elevated intraocular pressure (IOP) due to degeneration and fibrosis of the trabecular meshwork (TM). Glaucoma medications aim to reduce IOP without targeting the specific TM pathology, Bone-marrow mesenchymal stem cells (MSCs) are used today in various clinical studies. Here, we investigated the potential of MSCs therapy in an glaucoma-like ocular hypertension (OHT) model and decipher in vitro the effects of MSCs on primary human trabecular meshwork cells. METHODS: Ocular hypertension model was performed by cauterization of 3 episcleral veins (EVC) of Long-Evans male rat eyes. MSCs were isolated from rat bone marrow, amplified in vitro and tagged with quantum dot nanocrystals. Animals were distributed as 1) MSCs group receiving 5.10(5)cells/6µl Minimum Essential Medium and 2) MEM group receiving 6µl MEM (n = 10 each). Injections were performed into the anterior chamber of 20 days-hypertensive eyes and IOP was monitored twice a week for 4 weeks. At the end of experiment, cell distribution in the anterior segment was examined in confocal microscopy on flat mounted corneas. Moreover, we tested in vitro effects of MSCs conditioned medium (MSC-CM) on primary human trabecular meshwork cells (hTM cells) using Akt activation, myosin phosphorylation and TGF-ß2-dependent profibrotic phenotype in hTM cells. RESULTS: We demonstrated a rapid and long-lasting in vivo effect of MSCs transplantation that significantly reduced IOP in hypertensive eyes induced by EVC. MSCs were located to the ciliary processes and the TM. Enumeration of RGCs on whole flat-mounted retina highlighted a protective effect of MSCs on RGCs death. In vitro, MSC-CM promotes: (i) hTM cells survival by activating the antiapoptotic pathway, Akt, (ii) hTM cells relaxation as analyzed by the decrease in myosin phosphorylation and (iii) inhibition of TGF-ß2-dependent profibrotic phenotype acquisition in hTM cells. CONCLUSIONS: MSCs injection in the ocular anterior chamber in a rat model of OHT provides neuroprotective effect in the glaucoma pathophysiology via TM protection. These results demonstrate that MSCs constitute promising tool for treating ocular hypertension and retinal cell degeneration.


Asunto(s)
Glaucoma/terapia , Trasplante de Células Madre Mesenquimatosas , Animales , Apoptosis , Células Cultivadas , Presión Intraocular , Masculino , Células Madre Mesenquimatosas/citología , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...