Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 30(3): 616-628, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010363

RESUMEN

PURPOSE: Anastomotic leak (AL) is a major complication in colorectal cancer surgery and consists of the leakage of intestinal content through a poorly healed colonic wound. Colorectal cancer recurrence after surgery is a major determinant of survival. We hypothesize that AL may allow cancer cells to escape the gut and lead to cancer recurrence and that improving anastomotic healing may prevent local implantation and metastatic dissemination of cancer cells. EXPERIMENTAL DESIGN: We investigated the association between AL and postoperative outcomes in patients with colorectal cancer. Using mouse models of poor anastomotic healing, we assessed the processes of local implantation and dissemination of cancer cells. The effect of dietary supplementation with inulin and 5-aminosalicylate (5-ASA), which activate PPAR-γ in the gut, on local anastomotic tumors was assessed in mice undergoing colonic surgery. Inulin and 5-ASA were also assessed in a mouse model of liver metastasis. RESULTS: Patients experiencing AL displayed lower overall and oncologic survival than non-AL patients. Poor anastomotic healing in mice led to larger anastomotic and peritoneal tumors. The microbiota of patients with AL displays a lower capacity to activate the antineoplastic PPAR-γ in the gut. Modulation of gut microbiota using dietary inulin and 5-ASA reinforced the gut barrier and prevented anastomotic tumors and metastatic spread in mice. CONCLUSIONS: Our findings reinforce the hypothesis that preventing AL is paramount to improving oncologic outcomes after colorectal cancer surgery. Furthermore, they pave the way toward dietary targeting of PPAR-γ as a novel way to enhance healing and diminish cancer recurrence.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Fuga Anastomótica/etiología , Fuga Anastomótica/prevención & control , Inulina , Receptores Activados del Proliferador del Peroxisoma , Factores de Riesgo , Recurrencia Local de Neoplasia/prevención & control , Neoplasias Colorrectales/patología
3.
Front Microbiol ; 14: 1067505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819017

RESUMEN

Introduction: The prebiotic inulin has previously shown both protective and tumor-promoting effects in colorectal cancer (CRC). These inconsistencies may be due to the gut microbial composition as several bacteria have been associated with CRC. Specifically, polyketide synthase-positive (pks+) Escherichia coli promotes carcinogenesis and facilitates CRC progression through the production of colibactin, a genotoxin that induces double-strand DNA breaks (DSBs). We investigated whether colibactin-producing Escherichia coli changed the protection conferred by inulin against tumor growth and progression using the ApcMin/+ mouse model of CRC. Methods: Mice received a 2% dextran sodium sulfate (DSS) solution followed by oral gavage with the murine pks + E. coli strain NC101 (EcNC101) and were fed a diet supplemented with 10% cellulose as control or 10% inulin for 4 weeks. Results: Inulin supplementation led to increase EcNC101 colonization compared to mice receiving the control diet. The increased colonization of EcNC101 resulted in more DSBs, tumor burden, and tumor progression in ApcMin/+ mice. The tumorigenic effect of EcN101 in ApcMin/+ mice mediated by inulin was dependent on colibactin production. Pasteurized E. coli Nissle 1917 (EcN), a probiotic, suppressed the inulin-driven EcNC101 expansion and impacted tumor progression. Discussion: Our results suggest that the presence of pks + E. coli influences the outcome of inulin supplementation in CRC and that microbiota-targeted interventions may mitigate this effect. Given the prevalence of pks + E. coli in both healthy and CRC populations and the importance of a fiber-rich diet, inulin supplementation in individuals colonized with pks + bacteria should be considered with caution.

4.
Gut ; 72(6): 1143-1154, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36585238

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) is the third most diagnosed cancer, and requires surgical resection and reconnection, or anastomosis, of the remaining bowel to re-establish intestinal continuity. Anastomotic leak (AL) is a major complication that increases mortality and cancer recurrence. Our objective is to assess the causal role of gut microbiota in anastomotic healing. DESIGN: The causal role of gut microbiota was assessed in a murine AL model receiving faecal microbiota transplantation (FMT) from patients with CRC collected before surgery and who later developed or not, AL. Anastomotic healing and gut barrier integrity were assessed after surgery. Bacterial candidates implicated in anastomotic healing were identified using 16S rRNA gene sequencing and were isolated from faecal samples to be tested both in vitro and in vivo. RESULTS: Mice receiving FMT from patients that developed AL displayed poor anastomotic healing. Profiling of gut microbiota of patients and mice after FMT revealed correlations between healing parameters and the relative abundance of Alistipes onderdonkii and Parabacteroides goldsteinii. Oral supplementation with A. onderdonkii resulted in a higher rate of leaks in mice, while gavage with P. goldsteinii improved healing by exerting an anti-inflammatory effect. Patients with AL and mice receiving FMT from AL patients presented upregulation of mucosal MIP-1α, MIP-2, MCP-1 and IL-17A/F before surgery. Retrospective analysis revealed that patients with AL present higher circulating neutrophil and monocyte counts before surgery. CONCLUSION: Gut microbiota plays an important role in surgical colonic healing in patients with CRC. The impact of these findings may extend to a vast array of invasive gastrointestinal procedures.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Ratones , Animales , Citocinas , Microbioma Gastrointestinal/fisiología , Estudios Retrospectivos , ARN Ribosómico 16S , Anastomosis Quirúrgica/efectos adversos , Fuga Anastomótica/microbiología , Neoplasias Colorrectales/cirugía
5.
Gut Pathog ; 14(1): 51, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578036

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most diagnosed cancer and the second most common cause of cancer deaths worldwide. CRC patients present with an increase in pathogens in their gut microbiota, such as polyketide synthase-positive bacteria (pks +) and enterotoxigenic Bacteroides fragilis (ETBF). The pks + Escherichia coli promotes carcinogenesis and facilitates CRC progression through the production of colibactin, a genotoxin that induces double-strand DNA breaks (DSBs). ETBF is a procarcinogenic bacterium producing the B. fragilis toxin (bft) that promotes colorectal carcinogenesis by modulating the mucosal immune response and inducing epithelial cell changes. METHODS: Fecal samples were collected from healthy controls (N = 62) and CRC patients (N = 94) from the province of Québec (Canada), and a bacterial DNA extraction was performed. Fecal DNA samples were then examined for the presence of the pks island gene and bft using conventional qualitative PCR. RESULTS: We found that a high proportion of healthy controls are colonized by pks + bacteria (42%) and that these levels were similar in CRC patients (46%). bft was detected in 21% of healthy controls and 32% of CRC patients, while double colonization by both pks + bacteria and ETBF occurred in 8% of the healthy controls and 13% of the CRC patients. Most importantly, we found that early-onset CRC (< 50 years) patients were significantly less colonized with pks + bacteria (20%) compared to late-onset CRC patients (52%). CONCLUSIONS: Healthy controls had similar levels of pks + bacteria and ETBF colonization as CRC patients, and their elevated levels may place both groups at greater risk of developing CRC. Colonization with pks + bacteria was less prevalent in early-compared to late-onset CRC.

6.
BMC Microbiol ; 21(1): 259, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583649

RESUMEN

BACKGROUND: Oral iron supplementation is commonly prescribed for anemia and may play an important role in the gut microbiota recovery of anemic individuals who received antibiotic treatment. This study aims to investigate the effects of iron supplementation on gut microbiota recovery after antibiotics exposure. RESULTS: Mice were subjected to oral antibiotic treatment with neomycin and metronidazole and were fed diets with different concentrations of iron. The composition of the gut microbiota was followed throughout treatment by 16S rRNA sequencing of DNA extracted from fecal samples. Gut microbiota functions were inferred using PICRUSt2, and short-chain fatty acid concentration in fecal samples was assessed by liquid-chromatography mass spectrometry. Iron supplementation after antibiotic exposure shifted the gut microbiota composition towards a Bacteroidetes phylum-dominant composition. At the genus level, the iron-supplemented diet induced an increase in the abundance of Parasutterella and Bacteroides, and a decrease of Bilophila and Akkermansia. Parasutterella excrementihominis, Bacteroides vulgatus, and Alistipes finegoldii, were more abundant with the iron excess diet. Iron-induced shifts in microbiota composition were accompanied by functional modifications, including an enhancement of the biosynthesis of primary bile acids, nitrogen metabolism, cyanoamino acid metabolism and pentose phosphate pathways. Recovery after antibiotic treatment increased propionate levels independent of luminal iron levels, whereas butyrate levels were diminished by excess iron. CONCLUSIONS: Oral iron supplementation after antibiotic therapy in mice may lead to deleterious changes in the recovery of the gut microbiota. Our results have implications on the use of oral iron supplementation after antibiotic exposure and justify further studies on alternative treatments for anemia in these settings.


Asunto(s)
Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Suplementos Dietéticos/efectos adversos , Disbiosis/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Hierro/efectos adversos , Animales , Bacterias/clasificación , Biodiversidad , Disbiosis/microbiología , Heces/microbiología , Hierro/farmacología , Ratones
7.
Clin Nutr ; 40(6): 3842-3851, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34130031

RESUMEN

BACKGROUND AND AIMS: Anastomotic leak (AL) is a major complication in colorectal surgery. Recent evidence suggests that the gut microbiota may affect healing and may cause or prevent AL. Butyrate is a beneficial short-chain fatty acid (SCFA) that is produced as a result of bacterial fermentation of dietary oligosaccharides and has been described as beneficial in the maintenance of colonic health. To assess the impact of oligosaccharides on colonic anastomotic healing in mice, we propose to modulate the microbiota with oligosaccharides to increase butyrate production via enhancement of butyrate-producing bacteria and, consequently, improve anastomotic healing in mice. METHODS: Animal experiments were conducted in mice that were subjected to diets supplemented with inulin, galacto-oligosaccharides (GOS) or cellulose, as a control, for two weeks before undergoing a surgical colonic anastomosis. Macroscopic and histological assessment of the anastomosis was performed. Extent of epithelial proliferation was assessed by Ki-67 immunohistochemistry. Gelatin zymography was used to evaluate the extent of matrix metalloproteinase (MMP) hydrolytic activity. RESULTS: Inulin and GOS diets were associated with increased butyrate production and better anastomotic healing. Histological analysis revealed an enhanced mucosal continuity, and this was associated with an increased re-epithelialization of the wound as determined by increased epithelial proliferation. Collagen concentration in peri-anastomotic tissue was higher with inulin and GOS diets and MMP activity, a marker of collagen degradation, was lower with both oligosaccharides. Inulin and GOS diets were further associated with lower bacterial translocation. CONCLUSIONS: Dietary supplementation with inulin and GOS may improve anastomotic healing and reinforce the gut barrier in mice.


Asunto(s)
Fuga Anastomótica/prevención & control , Enfermedades del Colon/cirugía , Ácidos Grasos Volátiles/administración & dosificación , Inulina/administración & dosificación , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Periodo Perioperatorio , Complicaciones Posoperatorias/prevención & control , Resultado del Tratamiento , Cicatrización de Heridas
8.
BMC Cancer ; 21(1): 172, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596864

RESUMEN

BACKGROUND: Colibactin is a genotoxin that induces DNA double-strand breaks that may lead to carcinogenesis and is produced by Escherichia coli strains harboring the pks island. Human and animal studies have shown that colibactin-producing gut bacteria promote carcinogenesis and enhance the progression of colorectal cancer through cellular senescence and chromosomal abnormalities. In this study, we investigated the impact of prebiotics on the genotoxicity of colibactin-producing E. coli strains Nissle 1917 and NC101. METHODS: Bacteria were grown in medium supplemented with 20, 30 and 40 mg/mL of prebiotics inulin or galacto-oligosaccharide, and with or without 5 µM, 25 µM and 125 µM of ferrous sulfate. Colibactin expression was assessed by luciferase reporter assay for the clbA gene, essential for colibactin production, in E. coli Nissle 1917 and by RT-PCR in E. coli NC101. The human epithelial colorectal adenocarcinoma cell line, Caco-2, was used to assess colibactin-induced megalocytosis by methylene blue binding assay and genotoxicity by γ-H2AX immunofluorescence analysis. RESULTS: Inulin and galacto-oligosaccharide enhanced the expression of clbA in pks+ E. coli. However, the addition of 125 µM of ferrous sulfate inhibited the expression of clbA triggered by oligosaccharides. In the presence of either oligosaccharide, E. coli NC101 increased dysplasia and DNA double-strand breaks in Caco-2 cells compared to untreated cells. CONCLUSION: Our results suggest that, in vitro, prebiotic oligosaccharides exacerbate DNA damage induced by colibactin-producing bacteria. Further studies are necessary to establish whether oligosaccharide supplementation may lead to increased colorectal tumorigenesis in animal models colonized with pks+ E. coli.


Asunto(s)
Carcinogénesis/patología , Neoplasias del Colon/patología , Daño del ADN , Escherichia coli/metabolismo , Mutágenos/efectos adversos , Oligosacáridos/farmacología , Péptidos/efectos adversos , Policétidos/efectos adversos , Células CACO-2 , Carcinogénesis/inducido químicamente , Senescencia Celular , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Islas Genómicas , Humanos
9.
Sci Rep ; 10(1): 21026, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273556

RESUMEN

Iron homeostasis is an essential biological process that ensures the tissue distribution of iron for various cellular processes. As the major producer of hepcidin, the liver is central to the regulation of iron metabolism. The liver is also home to many immune cells, which upon activation may greatly impact iron metabolism. Here, we focus on the role of invariant natural killer T (iNKT) cells, a subset of T lymphocytes that, in mice, is most abundant in the liver. Activation of iNKT cells with the prototypical glycosphingolipid antigen, α-galactosylceramide, resulted in immune cell proliferation and biphasic changes in iron metabolism. This involved an early phase characterized by hypoferremia, hepcidin induction and ferroportin suppression, and a second phase associated with strong suppression of hepcidin despite elevated levels of circulating and tissue iron. We further show that these changes in iron metabolism are fully dependent on iNKT cell activation. Finally, we demonstrate that the biphasic regulation of hepcidin is independent of NK and Kupffer cells, and is initially driven by the STAT3 inflammatory pathway, whereas the second phase is regulated by repression of the BMP/SMAD signaling pathway. These findings indicate that iNKT activation and the resulting cell proliferation influence iron homeostasis.


Asunto(s)
Homeostasis , Hierro/metabolismo , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proliferación Celular , Galactosilceramidas/inmunología , Hepcidinas/genética , Hepcidinas/metabolismo , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL
10.
PLoS Med ; 16(7): e1002847, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31265453

RESUMEN

BACKGROUND: The identification of patients with high-risk prostate cancer (PC) is a major challenge for clinicians, and the improvement of current prognostic parameters is an unmet clinical need. We and others have identified an association between the nuclear localization of NF-κB p65 and biochemical recurrence (BCR) in PC in small and/or single-centre cohorts of patients. METHODS AND FINDINGS: In this study, we accessed 2 different multi-centre tissue microarrays (TMAs) representing cohorts of patients (Test-TMA and Validation-TMA series) of the Canadian Prostate Cancer Biomarker Network (CPCBN) to validate the association between p65 nuclear frequency and PC outcomes. Immunohistochemical staining of p65 was performed on the Test-TMA and Validation-TMA series, which include PC tissues from patients treated by first-line radical prostatectomy (n = 250 and n = 1,262, respectively). Two independent observers evaluated the p65 nuclear frequency in digital images of cancer tissue and benign adjacent gland tissue. Kaplan-Meier curves coupled with a log-rank test and univariate and multivariate Cox regression models were used for statistical analyses of continuous values and dichotomized data (cutoff of 3%). Multivariate analysis of the Validation-TMA cohort showed that p65 nuclear frequency in cancer cells was an independent predictor of BCR using continuous (hazard ratio [HR] 1.02 [95% CI 1.00-1.03], p = 0.004) and dichotomized data (HR 1.33 [95% CI 1.09-1.62], p = 0.005). Using a cutoff of 3%, we found that this biomarker was also associated with the development of bone metastases (HR 1.82 [95% CI 1.05-3.16], p = 0.033) and PC-specific mortality (HR 2.63 [95% CI 1.30-5.31], p = 0.004), independent of clinical parameters. BCR-free survival, bone-metastasis-free survival, and PC-specific survival were shorter for patients with higher p65 nuclear frequency (p < 0.005). As the small cores on TMAs are a limitation of the study, a backward validation of whole PC tissue section will be necessary for the implementation of p65 nuclear frequency as a PC biomarker in the clinical workflow. CONCLUSIONS: We report the first study using the pan-Canadian multi-centre cohorts of CPCBN and validate the association between increased frequency of nuclear p65 frequency and a risk of disease progression.


Asunto(s)
Biomarcadores de Tumor/análisis , Núcleo Celular/química , Inmunohistoquímica , Neoplasias de la Próstata/química , Factor de Transcripción ReIA/análisis , Anciano , Neoplasias Óseas/secundario , Canadá , Núcleo Celular/patología , Progresión de la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Prostatectomía , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Reproducibilidad de los Resultados , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Análisis de Matrices Tisulares
11.
PLoS One ; 14(4): e0208677, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31026259

RESUMEN

Anemia is frequently encountered in patients with inflammatory bowel disease (IBD), decreasing the quality of life and significantly worsening the prognosis of the disease. The pathogenesis of anemia in IBD is multifactorial and results mainly from intestinal blood loss in inflamed mucosa and impaired dietary iron absorption. Multiple studies have proposed the use of the polyphenolic compound curcumin to counteract IBD pathogenesis since it has significant preventive and therapeutic properties as an anti-inflammatory agent and very low toxicity, even at high dosages. However, curcumin has been shown to possess properties consistent with those of an iron-chelator, such as the ability to modulate proteins of iron metabolism and decrease spleen and liver iron content. Thus, this property may further contribute to the development and severity of anemia of inflammation and iron deficiency in IBD. Herein, we evaluate the effects of curcumin on systemic iron balance in the dextran sodium sulfate (DSS) model of colitis in C57Bl/6 and BALB/c mouse strains that were fed an iron-sufficient diet. In these conditions, curcumin supplementation caused mild anemia, lowered iron stores, worsened colitis and significantly decreased overall survival, independent of the mouse strain. These findings suggest that curcumin usage as an anti-inflammatory supplement should be accompanied by monitoring of erythroid parameters to avoid exacerbation of iron deficiency anemia in IBD.


Asunto(s)
Anemia Ferropénica/inducido químicamente , Antiinflamatorios no Esteroideos/efectos adversos , Colitis/tratamiento farmacológico , Curcumina/efectos adversos , Anemia Ferropénica/metabolismo , Anemia Ferropénica/patología , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Colitis/inducido químicamente , Colitis/patología , Curcumina/uso terapéutico , Sulfato de Dextran , Femenino , Hierro de la Dieta/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
12.
Front Physiol ; 9: 159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29556203

RESUMEN

Iron homeostasis is tightly regulated to provide virtually all cells in the body, particularly red blood cells, with this essential element while defending against its toxicity. The peptide hormone hepcidin is central to the control of the amount of iron absorbed from the diet and iron recycling from macrophages. Previously, we have shown that hepcidin induction in macrophages following Toll-like receptor (TLR) stimulation depends on the presence of myeloid differentiation primary response gene 88 (MyD88). In this study, we analyzed the regulation of iron metabolism in MyD88-/- mice to further investigate MyD88 involvement in iron sensing and hepcidin induction. We show that mice lacking MyD88 accumulate significantly more iron in their livers than wild-type counterparts in response to dietary iron loading as they are unable to appropriately control hepcidin levels. The defect was associated with inappropriately low levels of Smad4 protein and Smad1/5/8 phosphorylation in liver samples found in the MyD88-/- mice compared to wild-type mice. In conclusion, our results reveal a previously unknown link between MyD88 and iron homeostasis, and provide new insights into the regulation of hepcidin through the iron-sensing pathway.

13.
Front Microbiol ; 8: 1809, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28983289

RESUMEN

Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD), where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS)-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC) mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis. Thus, luminal heme levels may further exacerbate colitis through the modulation of the gut microbiota and its metagenomic functional composition. Our data may have implications in the development of novel targets for therapeutic approaches aimed at lowering gastrointestinal heme levels through heme chelation or degradation using probiotics and nutritional interventions.

14.
Inflamm Bowel Dis ; 23(5): 753-766, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28368910

RESUMEN

BACKGROUND: Iron is an important nutrient for both the host and colonizing bacteria. Oral iron supplementation may impact the composition of the microbiota and can be particularly damaging to patients suffering from inflammatory bowel disease (IBD). However, patients with IBD may require iron supplementation to treat their anemia. METHODS: We fed mice with diets supplemented with ferrous sulfate at different doses (5, 50, and 500 mg of iron/kg chow) and with different iron formulations (ferrous sulfate, ferrous bisglycinate and ferric ethylenediaminetetraacetic acid [FEDTA]), and analyzed the effects on the composition of the gut microbiota by 16S ribosomal RNA gene sequencing. Using the dextran sodium sulfate (DSS)-induced colitis mouse model, we investigated the effects of iron supplementation in colitis severity, as well as the use of the probiotic Escherichia coli Nissle 1917 (EcN) in combination with iron supplementation. RESULTS: Iron supplementation at different doses induced shifts in the gut microbial communities and inferred metabolic pathways. However, depending on the iron formulation used in the diets, iron supplementation during dextran sodium sulfate-induced colitis was either beneficial (ferrous bisglycinate) or highly detrimental (FEDTA). Finally, the beneficial effect of the probiotic EcN in the dextran sodium sulfate-induced colitis model was potentiated by oral iron supplementation with ferrous sulfate. CONCLUSIONS: These results show that the iron formulations used to treat iron deficiency influence the gut microbiota and colitis in mice and suggest that distinct iron compounds may be of particular relevance to patients with IBD. In addition, the beneficial action of probiotics in IBD may be enhanced by oral iron supplementation.


Asunto(s)
Colitis/dietoterapia , Sulfato de Dextran/toxicidad , Suplementos Dietéticos , Hierro/farmacología , Microbiota , Probióticos/uso terapéutico , Animales , Colitis/etiología , Modelos Animales de Enfermedad , Femenino , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Factores Protectores
17.
Neuropharmacology ; 79: 506-14, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24412648

RESUMEN

Prolonged exposure of oligodendrocyte progenitor cultures to non-toxic concentrations of glutamate receptor agonists for 24 h decreased cellular proliferation mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Since prolonged agonist stimulation can regulate the expression of various families of receptors, we examined this possibility. Pretreatment of progenitor cultures with 100 µM kainic acid (KA) for 1-24 h caused a time-dependent decrease in AMPA receptor activity, determined by agonist-induced (45)Ca(2+) uptake. The maximum effect (70-80% decrease), observed in the 24 h-pretreated cells, was accompanied by a significant reduction in AMPA receptor subunits, as determined by Western blotting. GluR2/3 and GluR4 subunits were the most affected. Receptor down-regulation and (45)Ca(2+) uptake were only partially reversible upon KA removal. Furthermore, 24 h co-treatment of cultures with CNQX blocked the KA-induced decreases in calcium uptake. To address whether calpain, a calcium-activated protease, was implicated in the regulation of the AMPA receptor subunits, cultures were treated with the specific inhibitor PD150606 alone or in combination with KA for 24 h. Calpain inhibition significantly increased GluR1 in both conditions and partly reversed downregulation of GluR4 by KA. Collectively, these results indicate that calpain is not involved in the agonist-induced down-regulation of AMPA receptors subunits 2/3 in oligodendrocyte progenitors, while it downregulates GluR1 and GluR4.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Ácido Kaínico/farmacología , Oligodendroglía/efectos de los fármacos , Receptores AMPA/metabolismo , Células Madre/efectos de los fármacos , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Acrilatos/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Oligodendroglía/metabolismo , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Células Madre/metabolismo , Factores de Tiempo
18.
Exp Neurol ; 226(1): 47-57, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20696161

RESUMEN

Fyn, a nonreceptor Src-like tyrosine kinase (SLK), plays an important role in oligodendrocyte differentiation and myelination in the brain. However, its role in myelination of peripheral nerves remains undefined. Here we report that selective inhibitors of SLKs (PP2 and SU6656) caused a dose-dependent decrease in the accumulation of several myelin proteins, including myelin basic protein (MBP), protein zero (P0) and myelin-associated glycoprotein (MAG) in rat Schwann cell-dorsal root ganglion neuron (SC-DRGN) co-cultures. Interestingly, SLK inhibition was insufficient to completely abrogate myelin synthesis, as removal of PP2 after several days of treatment permitted a partial recovery of myelin proteins expression. Furthermore, fewer and shorter myelinated segments formed in the continuous presence of PP2, although the myelin formed was normally compacted. PP2 also decreased the number of SCs expressing Krox-20, a master-regulatory transcription factor expressed by myelinating SCs, by 50%. These results were corroborated by selective knockdown of Fyn and Lyn kinases using siRNA. Extracellular matrix is important to SC differentiation and peripheral myelination. Using phospho-specific antibodies, we showed that addition of extracellular matrix extracts to SC-DRGN co-cultures resulted in the activation of ERK, Akt and p38 MAPK, three protein kinases involved in SC proliferation, differentiation and peripheral myelination. PP2 blocked the phosphorylation of all three kinases. Our results support a role for SLKs in the initiation of peripheral myelination via the activation of p38, Akt and ERK, which regulate Krox-20 expression and peripheral myelination.


Asunto(s)
Vaina de Mielina/enzimología , Vaina de Mielina/fisiología , Nervios Periféricos/enzimología , Nervios Periféricos/fisiología , Familia-src Quinasas/fisiología , Animales , Axones/metabolismo , Western Blotting , Células Cultivadas , Proteína 2 de la Respuesta de Crecimiento Precoz/biosíntesis , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Matriz Extracelular/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/enzimología , Inmunohistoquímica , Microscopía Electrónica , Proteínas de la Mielina/biosíntesis , Proteínas de la Mielina/genética , Vaina de Mielina/ultraestructura , Nervios Periféricos/ultraestructura , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fyn/biosíntesis , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Células de Schwann/enzimología , Células de Schwann/ultraestructura , Canales de Sodio/metabolismo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética
19.
J Neuropathol Exp Neurol ; 69(9): 930-44, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20720504

RESUMEN

We examined the effects of growth factors and axonal signals on the differentiation of human fetal and adult oligodendrocyte progenitor cells (OPCs) and determined whether these effects translated into enhanced axonal ensheathment. Only small numbers of fetal OPCs grown in defined medium expressed the oligodendroglial lineage markers Olig2 and O4. The combination of platelet-derived growth factor-AA and basic fibroblast growth factor enhanced proliferation of Olig2-positive and O4-positive cells; a combination of brain-derived neurotrophic factor and insulin-like growth factor 1 promoted O4-positive cell differentiation, galactocerebroside expression, and morphological complexity. Coculturing with rodent dorsal root ganglion neurons in defined medium alone enhanced OPC differentiation and myelin basic protein expression. The addition of brain-derived neurotrophic factor/insulin-like growth factor 1 further enhanced differentiation, axonal attachment and ensheathment, and clustering of the contactin-associated protein Caspr and Na+ channels. By contrast, most adult OPCs were O4 positive and Olig2 positive in defined medium; both brain-derived neurotrophic factor/insulin-like growth factor 1 and platelet-derived growth factor-AA/basic fibroblast growth factor promoted their myelin basic protein expression and membrane sheet formation; coculture with dorsal root ganglion neurons further increased myelin basic protein expression. Growth factors also enhanced attachment of adult OPCs to axons, but their capacity to ensheath axons was lower than that of fetal OPCs. These results demonstrate that fetal and adult OPCs show measurable responses to selected growth factors and axon signals that correlate with their capacity for axon ensheathment. The distinct properties of fetal and adult OPCs may be related to differences in their chronological age and initial differentiation states.


Asunto(s)
Axones/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Oligodendroglía/fisiología , Transducción de Señal/fisiología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Adulto , Animales , Axones/ultraestructura , Células Cultivadas , Técnicas de Cocultivo , Femenino , Ganglios Espinales/citología , Edad Gestacional , Humanos , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Células Madre/citología
20.
J Neuropathol Exp Neurol ; 68(8): 857-69, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19606067

RESUMEN

We previously reported that the precursor form of nerve growth factor (pro-NGF) and not mature NGF is liberated in the CNS in an activity-dependent manner, and that its maturation and degradation occur in the extracellular space by the coordinated action of proteases.Here, we present evidence of diminished conversion of pro-NGF to its mature form and of greater NGF degradation in Alzheimer disease (AD) brain samples compared with controls. These alterations of the NGF metabolic pathway likely resulted in the increased pro-NGF levels. The pro-NGF was largely in a peroxynitrited form in the AD samples. Intrahippocampal injection of amyloid-beta oligomers provoked similar upregulation of pro-NGF in naive rats that was accompanied by evidence of microglial activation (CD40), increased levels of inducible nitric oxide synthase, and increased activity of the NGF-degrading enzyme matrix metalloproteinase 9. The elevated inducible nitric oxide synthase provoked the generation of biologically inactive, peroxynitrite-modified pro-NGF in amyloid-beta oligomer-injected rats. These parameters were corrected by minocycline treatment. Minocycline also diminished altered matrix metalloproteinase 9, inducible nitric oxide synthase, and microglial activation (CD40); improved cognitive behavior; and normalized pro-NGF levels in a transgenic mouse AD model. The effects of amyloid-beta amyloid CNS burden on NGF metabolism may explain the paradoxical upregulation of pro-NGF in AD accompanied by atrophy of forebrain cholinergic neurons.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Encéfalo/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Fragmentos de Péptidos/farmacología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Antígenos CD40/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoprecipitación/métodos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Minociclina/farmacología , Minociclina/uso terapéutico , Factores de Crecimiento Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ácido Peroxinitroso/metabolismo , Precursores de Proteínas/metabolismo , Ratas , Ratas Endogámicas F344 , Tiempo de Reacción/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...