Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Psychiatry ; 181(6): 541-552, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685858

RESUMEN

OBJECTIVE: To investigate shared and specific neural correlates of cognitive functions in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), the authors performed a comprehensive meta-analysis and considered a balanced set of neuropsychological tasks across the two disorders. METHODS: A broad set of electronic databases was searched up to December 4, 2022, for task-based functional MRI studies investigating differences between individuals with ADHD or ASD and typically developing control subjects. Spatial coordinates of brain loci differing significantly between case and control subjects were extracted. To avoid potential diagnosis-driven selection bias of cognitive tasks, the tasks were grouped according to the Research Domain Criteria framework, and stratified sampling was used to match cognitive component profiles. Activation likelihood estimation was used for the meta-analysis. RESULTS: After screening 20,756 potentially relevant references, a meta-analysis of 243 studies was performed, which included 3,084 participants with ADHD (676 females), 2,654 participants with ASD (292 females), and 6,795 control subjects (1,909 females). ASD and ADHD showed shared greater activations in the lingual and rectal gyri and shared lower activations in regions including the middle frontal gyrus, the parahippocampal gyrus, and the insula. By contrast, there were ASD-specific greater and lower activations in regions including the left middle temporal gyrus and the left middle frontal gyrus, respectively, and ADHD-specific greater and lower activations in the amygdala and the global pallidus, respectively. CONCLUSIONS: Although ASD and ADHD showed both shared and disorder-specific standardized neural activations, disorder-specific activations were more prominent than shared ones. Functional brain differences between ADHD and ASD are more likely to reflect diagnosis-related pathophysiology than bias from the selection of specific neuropsychological tasks.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Imagen por Resonancia Magnética , Humanos , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Femenino , Masculino , Pruebas Neuropsicológicas/estadística & datos numéricos
2.
Neuroimage ; 281: 120383, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734477

RESUMEN

Activation likelihood estimation (ALE) meta-analysis has been applied to structural neuroimaging data since long, but up to now, any systematic assessment of the algorithm's behavior, power and sensitivity has been based on simulations using functional neuroimaging databases as their foundation. Here, we aimed to determine whether the guidelines offered by previous evaluations can be generalized to ALE meta-analyses of voxel-based morphometry (VBM) studies. We ran 365000 distinct ALE analyses filled with simulated experiments, randomly sampling parameters from BrainMap's VBM experiment database. We then examined the algorithm's sensitivity, its susceptibility to spurious convergence, and its susceptibility to excessive contributions by individual experiments. In general, the performance of the ALE algorithm was highly comparable between imaging modalities, with the algorithm's sensitivity and specificity reaching similar levels with structural data as previously observed with functional data. Because of the lower number of foci reported and the higher number of participants usually included in structural experiments, individual studies had, on average, a higher impact towards significant clusters. To prevent significant clusters from being driven by single experiments, we recommend that researchers include at least 23 experiments in a VBM ALE dataset, instead of the previously recommended minimum of n = 17. While these recommendations do not constitute hard borders, running ALE analyses on smaller datasets would require special diligence in assessing and reporting the contributions of experiments to individual clusters.


Asunto(s)
Encéfalo , Neuroimagen Funcional , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Probabilidad , Algoritmos , Bases de Datos Factuales , Imagen por Resonancia Magnética/métodos
3.
Pain ; 164(1): e10-e24, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35560117

RESUMEN

ABSTRACT: Neuroimaging is a powerful tool to investigate potential associations between chronic pain and brain structure. However, the proliferation of studies across diverse chronic pain syndromes and heterogeneous results challenges data integration and interpretation. We conducted a preregistered anatomical likelihood estimate meta-analysis on structural magnetic imaging studies comparing patients with chronic pain and healthy controls. Specifically, we investigated a broad range of measures of brain structure as well as specific alterations in gray matter and cortical thickness. A total of 7849 abstracts of experiments published between January 1, 1990, and April 26, 2021, were identified from 8 databases and evaluated by 2 independent reviewers. Overall, 103 experiments with a total of 5075 participants met the preregistered inclusion criteria. After correction for multiple comparisons using the gold-standard family-wise error correction ( P < 0.05), no significant differences associated with chronic pain were found. However, exploratory analyses using threshold-free cluster enhancement revealed several spatially distributed clusters showing structural alterations in chronic pain. Most of the clusters coincided with regions implicated in nociceptive processing including the amygdala, thalamus, hippocampus, insula, anterior cingulate cortex, and inferior frontal gyrus. Taken together, these results suggest that chronic pain is associated with subtle, spatially distributed alterations of brain structure.


Asunto(s)
Dolor Crónico , Humanos , Dolor Crónico/diagnóstico por imagen , Funciones de Verosimilitud , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen
4.
Hum Brain Mapp ; 43(13): 3987-3997, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35535616

RESUMEN

In recent neuroimaging studies, threshold-free cluster enhancement (TFCE) gained popularity as a sophisticated thresholding method for statistical inference. It was shown to feature higher sensitivity than the frequently used approach of controlling the cluster-level family-wise error (cFWE) and it does not require setting a cluster-forming threshold at voxel level. Here, we examined the applicability of TFCE to a widely used method for coordinate-based neuroimaging meta-analysis, Activation Likelihood Estimation (ALE), by means of large-scale simulations. We created over 200,000 artificial meta-analysis datasets by independently varying the total number of experiments included and the amount of spatial convergence across experiments. Next, we applied ALE to all datasets and compared the performance of TFCE to both voxel-level and cluster-level FWE correction approaches. All three multiple-comparison correction methods yielded valid results, with only about 5% of the significant clusters being based on spurious convergence, which corresponds to the nominal level the methods were controlling for. On average, TFCE's sensitivity was comparable to that of cFWE correction, but it was slightly worse for a subset of parameter combinations, even after TFCE parameter optimization. cFWE yielded the largest significant clusters, closely followed by TFCE, while voxel-level FWE correction yielded substantially smaller clusters, showcasing its high spatial specificity. Given that TFCE does not outperform the standard cFWE correction but is computationally much more expensive, we conclude that employing TFCE for ALE cannot be recommended to the general user.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neuroimagen , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Funciones de Verosimilitud , Neuroimagen/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...