Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 918: 170565, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38331280

RESUMEN

Tagoro is one of the few submarine volcanoes in the world that has been monitored since its early eruptive stage in 2011 to present day. After six multidisciplinary oceanographic cruises conducted between 2014 and 2023 to gather a comprehensive dataset of georeferenced video-imagery and in situ measurements of hydrothermal flow velocities and hydrothermal fluid samples, we provide a robust characterization of the ongoing hydrothermal fluid velocity, heat flux, and nutrient release, along with an accurate delimitation of the hydrothermal field area. Our results reveal that Tagoro hydrothermal system extends from the main hydrothermal crater up to the summit, covering an area of 7600 m2. This hydrothermal field comprises thousands of small individual vents, displaying diverse morphologies such as crevices and delicate chimney-like structures, irregularly scattered across the dominant diffuse venting surface. Hydrothermal fluid temperatures and velocities at the substratum level reveal a clustered spatial distribution, ranging from 21.0 to 33.3 °C and 1.6-26.8 cm min-1, respectively. Furthermore, our findings indicate a discernible correlation between hydrothermal fluid temperature and vent density, while significant differences were observed between velocities from diffuse and focused areas. Additionally, heat fluxes exceed 200 MW across the entire active region, with heat flux values ranging from 6.06 to 146.87 kW m-2 and dissolve inorganic nutrient concentrations exhibit significant enrichments, comparable to the magnitude of important nutrient sources in the area as upwelling systems or mesoscale structures.

2.
J Hazard Mater ; 465: 133128, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134684

RESUMEN

Marine ecosystems pollution by microplastics (MPs) is a global problem of special concern. The present study examines the prevalence and distribution of MPs and cellulosic particles in sublittoral coastal sediments of the Canary Islands archipelago (Spain). At twenty-six different locations alongside seven islands, three samples were taken parallel to the shoreline between 1 and 10 m depth (n = 78). Sediment samples were primarily digested with a H2O2 solution followed by four flotations in a saturated NaCl solution. The mean concentration obtained was 3.9 ± 1.6 items/g of dry weight. A similar distribution pattern was observed across all islands concerning particles morphology, color, size and composition: mainly colorless/translucent and blue fibers (60.0%). Additionally, fragments were also found, and to a much lesser extent microbeads, films and tangled messes. MicroFourier Transform Infrared spectroscopy analysis of 12.5% of the fibers, showed that they were mainly cellulosic (54.5%) -either natural or semisynthetic- followed by polyester (22.7%) and acrylic (4.5%). The potential correlation between particle distribution in nearshore sediments and wave intensity was also explored. This work provides the first comprehensive report on the current MPs content of the seabed of the region.

3.
Sci Rep ; 13(1): 21184, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040728

RESUMEN

The technical and intellectual capabilities of past societies are reflected in the monuments they were able to build. Tracking the provenance of the stones utilised to build prehistoric megalithic monuments, through geological studies, is of utmost interest for interpreting ancient architectures as well as to contribute to their protection. According to the scarce information available, most stones used in European prehistoric megaliths originate from locations near the construction sites, which would have made transport easier. The Menga dolmen (Antequera, Malaga, Spain), listed in UNESCO World Heritage since July 2016, was designed and built with stones weighting up to nearly 150 tons, thus becoming the most colossal stone monument built in its time in Europe (c. 3800-3600 BC). Our study (based on high-resolution geological mapping as well as petrographic and stratigraphic analyses) reveals key geological and archaeological evidence to establish the precise provenance of the massive stones used in the construction of this monument. These stones are mostly calcarenites, a poorly cemented detrital sedimentary rock comparable to those known as 'soft stones' in modern civil engineering. They were quarried from a rocky outcrop located at a distance of approximately 1 km. In this study, it can be inferred the use of soft stone in Menga reveals the human application of new wood and stone technologies enabling the construction of a monument of unprecedented magnitude and complexity.

4.
Chemosphere ; 288(Pt 2): 132530, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34653476

RESUMEN

In this work, the microplastic content of sediments collected in July 2020 between 5 and 7 m depth was studied in four locations of La Palma island (Canary Islands, Spain). At each sampling location, three samples were taken parallel to the shoreline. The microplastic content in each sampling corer was studied every 2.5 cm depth after digestion with a H2O2 solution followed by flotation in a saturated NaCl solution. Visualization of the final filtrates under a stereomicroscope revealed that all the sediment samples evaluated contained mostly microfibers (98.3%) which were mainly white/colorless (86.0%) and blue (9.8%), with an average length of 2423 ± 2235 (SD) mm and an average concentration of 2682 ± 827 items per kg of dry weight, being the total number of items found 1,019. Fourier Transform Infrared microscopy analysis of 13.9% (n = 139) of the microfibers also showed that they were mainly cellulosic (81.3%). No significant differences were found between the depths of the sediment. However, significant differences were found between the number of fibers from the sampling sites at the east and west of the island. Such variability could be driven by the winds and ocean mesoscale dynamics in the area. This study confirms the wide distribution of microfibers in sediments from an oceanic island like La Palma, providing their first report in marine sediments of the Canary Islands.


Asunto(s)
Microplásticos , Plásticos , Islas del Atlántico , Peróxido de Hidrógeno , España
5.
Mar Pollut Bull ; 169: 112548, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34091246

RESUMEN

The present work has studied the incidence and type of micro (1-5 mm), meso (5-25 mm) and macroplastics (>25 mm) that have reached Arenas Blancas beach, located in the north coast of El Hierro island, in the Canary Islands (Spain), from October 2019 to May 2020 (13 sampling dates with 3 sampling points each). Taking into consideration the three studied plastic debris fractions (macro, meso and microplastics), a total of 9206 items were found, which had a total weight of 1169.7 g and a concentration of 891.3 ± 91.5 items/m2 (118.3 ± 17.8 g/m2 and 2.3 ± 0.4 g/L). Regarding their colour, most of them were transparent/white/clear, especially in the microplastic fraction in which they accounted for a 68% of the total. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy of meso and microplastic fractions indicated that most of the particles were either polypropylene and polyethylene followed by polystyrene in a much lower amount. In general, the total amount of plastic debris that arrives to the beach by the persistent oceanic current pattern linked to the easternmost branch of the North Atlantic Subtropical Gyre is comparable to those of the most contaminated beaches of the Canary Islands archipelago, suggesting that a new hotspot of plastic debris arrival has been found.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Playas , Monitoreo del Ambiente , Islas , España , Residuos/análisis , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 788: 147802, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34034192

RESUMEN

Nowadays it is widely known that pollution by microplastics (MP) at the open ocean covers immense areas. Buoyant plastics tend to accumulate in areas of convergence at the sea surface such as subtropical gyres, while non-buoyant plastics accumulate at the seafloor. However, previous studies have revealed that the total amount of plastic in the different oceans is not well correlated with the concentrations measured at the sea surface and the sea floor, evidencing a significant amount of missing plastic in the oceans. This deviation could be related to an underestimation of the role played by small fragments of plastic and fibers in the oceans. Furthermore, microplastic fragments with a density lower than the density of seawater have been gathered hundreds of meters below the sea surface in the Pacific Ocean due to their size and shape. The main objective of this study is to carry out, for the first time, an equivalent analysis along the water column for the Atlantic Ocean. In that sense, a total number of 51 samples were collected during four different oceanographic cruises between February and December 2019, from the sea surface down to 1150 m depth at the open ocean waters of the Canary Islands region (Spain). For each sample, 72 l of seawater were filtered on board with a mesh size of 100 µm, where the presence of microplastics has been clearly observed. Our results reveal the presence of microplastics at least up to 1150 m depth, at the Northeastern Atlantic Subtropical Gyre with noticeable seasonal differences. The spatial distribution of these small fragments and fibers at the water column is mainly related to the oceanic dynamics and mesoscale convective flows, overcoming the MP motion induced by their own buoyancy. Moreover, these microplastics have being transported by the ocean dynamics as passive drifters.

7.
Mar Pollut Bull ; 164: 111989, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33485014

RESUMEN

Monthly samplings carried out in 2016-2019 and satellite color images from 2002 to 2019 have been combined to determine the onset and causative species of the ecosystem disruptive algal bloom (EDAB) that affects the Mar Menor coastal lagoon (Western Mediterranean Sea) since 2015. Substantial changes in satellite spectral reflectance attributable to increasing abundance of Synechococcus were registered in 2014. Furthermore, cell abundances of this species in 2016 were the largest ever obtained in the lagoon (6 106 cells mL-1), with values similar to those reported for other Mediterranean hypertrophic estuaries and coastal lagoons. These results suggest that the early changes leading to the EDAB started in 2014 and that Synechococcus played a relevant role in its development. Moreover, diatom and dinoflagellate abundances changed substantially in 2016-2019, ranging from 102 to more than 104 cells mL-1. Some of these changes were linked to flood, suggesting that EDAB has modified substantially the homeostatic capacity of the lagoon.


Asunto(s)
Diatomeas , Dinoflagelados , Ecosistema , Monitoreo del Ambiente , Eutrofización , Mar Mediterráneo , Fitoplancton , Estaciones del Año
8.
Nat Commun ; 9(1): 142, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321528

RESUMEN

Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - ß-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. ß-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.


Asunto(s)
Peces , Océanos y Mares , Fitoplancton , Zooplancton , Animales , Biodiversidad , Tamaño Corporal , Plancton , Población
9.
Nat Commun ; 8(1): 201, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28779070

RESUMEN

The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..


Asunto(s)
Microbiología del Aire , Bacterias/aislamiento & purificación , Agua de Mar/microbiología , Océano Atlántico , Bacterias/clasificación , Bacterias/genética , Ecosistema , Océano Índico , Océano Pacífico
10.
PLoS One ; 11(3): e0151699, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26982180

RESUMEN

We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences.


Asunto(s)
Océanos y Mares , Fitoplancton/clasificación , Clima Tropical , Especificidad de la Especie
11.
ISME J ; 10(3): 596-608, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26251871

RESUMEN

The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Océanos y Mares , Filogenia , Cloruro de Sodio/análisis , Cloruro de Sodio/metabolismo
12.
PLoS One ; 10(2): e0118136, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25671714

RESUMEN

The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed.


Asunto(s)
Bacterias/aislamiento & purificación , Islas , Plancton/microbiología , Erupciones Volcánicas , Biodiversidad , España , Factores de Tiempo
13.
PLoS One ; 9(7): e102354, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25047077

RESUMEN

The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.


Asunto(s)
Biota , Erupciones Volcánicas/análisis , Acústica , Migración Animal , Animales , Evolución Biológica , Desastres , Ecosistema , Luz , Plancton/fisiología , Células Procariotas , Agua de Mar/análisis , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...