Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 133(6): 3424-3437, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35945896

RESUMEN

AIM: To establish a basis for rapid remediation of large areas contaminated with Bacillus anthracis spores. METHODS AND RESULTS: Representative surfaces of wood, steel and cement were coated by nebulization with B. thuringiensis HD-1 cry- (a simulant for B. anthracis) at 5.9 ± 0.2, 6.3 ± 0.2 and 5.8 ± 0.2 log10 CFU per cm2 , respectively. These were sprayed with formaldehyde, either with or without pre-germination. Low volume (equivalent to ≤2500 L ha-1 ) applications of formaldehyde at 30 g l-1 to steel or cement surfaces resulted in ≥4 or ≤2 log10 CFU per cm2 reductions respectively, after 2 h exposure. Pre-germinating spores (500 mmol l-1 l-alanine and 25 mmol l-1 inosine, pH 7) followed by formaldehyde application showed higher levels of spore inactivation than formaldehyde alone with gains of up to 3.4 log10 CFU per cm2 for a given dose. No loss in B. thuringiensis cry- viability was measured after the 2 h germination period, however, a pre-heat shock log10 reduction was seen for B. anthracis strains: LSU149 (1.7 log10), Vollum and LSU465 (both 0.9 log10), LSU442 (0.2 log10), Sterne (0.8 log10) and Ames (0.6 log10). CONCLUSIONS: A methodology was developed to produce representative spore contamination of surfaces along with a laboratory-based technique to measure the efficacy of decontamination. Dose-response analysis was used to optimize decontamination. Pre-germinating spores was found to increase effectiveness of decontamination but requires careful consideration of total volume used (germinant and decontaminant) by surface type. SIGNIFICANCE AND IMPACT OF THE STUDY: To be practically achievable, decontamination of a wide area contaminated with B. anthracis spores must be effective, timely and minimize the amount of materials required. This study uses systematic dose-response methodology to demonstrate that such an approach is feasible.


Asunto(s)
Bacillus anthracis , Bacillus thuringiensis , Bacillus thuringiensis/fisiología , Esporas Bacterianas , Descontaminación/métodos , Formaldehído/farmacología , Acero/farmacología
2.
PLoS One ; 10(12): e0145799, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26714315

RESUMEN

Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation.


Asunto(s)
Bacillus anthracis/aislamiento & purificación , Microbiología del Suelo , Manejo de Especímenes/métodos , Carbunco/microbiología , Polvo , Esporas Bacterianas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...