Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Neurosci ; 27(4): 772-781, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443701

RESUMEN

Until now, it has been difficult to examine the neural bases of foraging in naturalistic environments because previous approaches have relied on restrained animals performing trial-based foraging tasks. Here we allowed unrestrained monkeys to freely interact with concurrent reward options while we wirelessly recorded population activity in the dorsolateral prefrontal cortex. The animals decided when and where to forage based on whether their prediction of reward was fulfilled or violated. This prediction was not solely based on a history of reward delivery, but also on the understanding that waiting longer improves the chance of reward. The task variables were continuously represented in a subspace of the high-dimensional population activity, and this compressed representation predicted the animal's subsequent choices better than the true task variables and as well as the raw neural activity. Our results indicate that monkeys' foraging strategies are based on a cortical model of reward dynamics as animals freely explore their environment.


Asunto(s)
Corteza Prefrontal , Recompensa , Animales , Macaca mulatta , Conducta de Elección
3.
Nature ; 627(8002): 174-181, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355804

RESUMEN

Social interactions represent a ubiquitous aspect of our everyday life that we acquire by interpreting and responding to visual cues from conspecifics1. However, despite the general acceptance of this view, how visual information is used to guide the decision to cooperate is unknown. Here, we wirelessly recorded the spiking activity of populations of neurons in the visual and prefrontal cortex in conjunction with wireless recordings of oculomotor events while freely moving macaques engaged in social cooperation. As animals learned to cooperate, visual and executive areas refined the representation of social variables, such as the conspecific or reward, by distributing socially relevant information among neurons in each area. Decoding population activity showed that viewing social cues influences the decision to cooperate. Learning social events increased coordinated spiking between visual and prefrontal cortical neurons, which was associated with improved accuracy of neural populations to encode social cues and the decision to cooperate. These results indicate that the visual-frontal cortical network prioritizes relevant sensory information to facilitate learning social interactions while freely moving macaques interact in a naturalistic environment.


Asunto(s)
Macaca , Corteza Prefrontal , Aprendizaje Social , Corteza Visual , Animales , Potenciales de Acción , Conducta Cooperativa , Señales (Psicología) , Toma de Decisiones/fisiología , Función Ejecutiva/fisiología , Macaca/fisiología , Neuronas/fisiología , Estimulación Luminosa , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Recompensa , Aprendizaje Social/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...