Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 78(1): 165-179, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089156

RESUMEN

BACKGROUND & AIMS: Common precursors for the liver, biliary tree, and pancreas exist at an early stage of development in the definitive endoderm forming the foregut. We have identified and characterised endodermal stem/progenitor cells with regenerative potential persisting in the adult human duodenum. METHODS: Human duodena were obtained from organ donors, and duodenal submucosal gland cells were isolated after removal of the mucosa layer. Cells were cultured on plastic or as organoids and were transplanted into severe combined immunodeficient (SCID) mouse livers. RESULTS: In situ studies of submucosal glands in the human duodenum revealed cells expressing stem/progenitor cell markers that had unique phenotypic traits distinguishable from intestinal crypt cells. Genetic signature studies indicated that the cells are closer to biliary tree stem cells and to definitive endodermal cells than to adult hepatocytes, supporting the interpretation that they are endodermal stem/progenitor cells. In vitro, human duodenal submucosal gland cells demonstrated clonal growth, capability to form organoids, and ability to acquire functional hepatocyte traits. In vivo, transplanted cells engrafted into the livers of immunocompromised mice and differentiated to mature liver cells. In an experimental model of fatty liver, human duodenal submucosal gland cells were able to rescue hosts from liver damage by supporting repopulation and regeneration of the liver. CONCLUSIONS: A cell population with clonal growth and organoid formation capability, which has liver differentiation potency in vitro and in vivo in murine experimental models, is present within adult duodenal submucosal glands. These cells can be isolated, do not require reprogramming, and thus could potentially represent a novel cell source for regenerative medicine of the liver. IMPACT AND IMPLICATIONS: Cell therapies for liver disease could represent an option to support liver function, but the identification of sustainable and viable cell sources is critical. Here, we describe a cell population with organoid formation capability and liver-specific regenerative potential in submucosal glands of the human duodenum. Duodenal submucosal gland cells are isolated from adult organs, do not require reprogramming, and could rescue hepatocellular damage in preclinical models of chronic, but not acute, liver injury. Duodenal submucosal gland cells could represent a potential candidate cell source for regenerative medicine of the liver, but the determination of cell dose and toxicity is needed before clinical testing in humans.


Asunto(s)
Sistema Biliar , Hiperplasia Nodular Focal , Adulto , Humanos , Ratones , Animales , Ratones SCID , Regeneración Hepática , Hepatocitos , Hígado/lesiones , Diferenciación Celular
2.
J Hepatol ; 75(6): 1377-1386, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34329660

RESUMEN

BACKGROUND & AIMS: The microenvironment of intrahepatic cholangiocarcinoma (iCCA) is hypovascularized, with an extensive lymphatic network. This leads to rapid cancer spread into regional lymph nodes and the liver parenchyma, precluding curative treatments. Herein, we investigated which factors released in the iCCA stroma drive the inhibition of angiogenesis and promote lymphangiogenesis. METHODS: Quantitative proteomics was performed on extracellular fluid (ECF) proteins extracted both from cancerous and non-cancerous tissues (NCT) of patients with iCCA. Computational biology was applied on a proteomic dataset to identify proteins involved in the regulation of vessel formation. Endothelial cells incubated with ECF from either iCCA or NCT specimens were used to assess the role of candidate proteins in 3D vascular assembly, cell migration, proliferation and viability. Angiogenesis and lymphangiogenesis were further investigated in vivo by a heterotopic transplantation of bone marrow stromal cells, along with endothelial cells in SCID/beige mice. RESULTS: Functional analysis of upregulated proteins in iCCA unveils a soluble angio-inhibitory milieu made up of thrombospondin (THBS)1, THBS2 and pigment epithelium-derived factor (PEDF). iCCA ECF was able to inhibit in vitro vessel morphogenesis and viability. Antibodies blocking THBS1, THBS2 and PEDF restored tube formation and endothelial cell viability to levels observed in NCT ECF. Moreover, in transplanted mice, the inhibition of blood vessel formation, the de novo generation of the lymphatic network and the dissemination of iCCA cells in lymph nodes were shown to depend on THBS1, THBS2 and PEDF expression. CONCLUSIONS: THBS1, THBS2 and PEDF reduce blood vessel formation and promote tumor-associated lymphangiogenesis in iCCA. Our results identify new potential targets for interventions to counteract the dissemination process in iCCA. LAY SUMMARY: Intrahepatic cholangiocarcinoma is a highly aggressive cancer arising from epithelial cells lining the biliary tree, characterized by dissemination into the liver parenchyma via lymphatic vessels. Herein, we show that the proteins THBS1, THBS2 and PEDF, once released in the tumor microenvironment, inhibit vascular growth, while promoting cancer-associated lymphangiogenesis. Therefore, targeting THBS1, THBS2 and PEDF may be a promising strategy to reduce cancer-associated lymphangiogenesis and counteract the invasiveness of intrahepatic cholangiocarcinoma.


Asunto(s)
Inductores de la Angiogénesis/metabolismo , Colangiocarcinoma/etiología , Linfangiogénesis/efectos de los fármacos , Trombospondina 1/farmacología , Trombospondinas/farmacología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Colangiocarcinoma/fisiopatología , Modelos Animales de Enfermedad , Ratones , Proteómica/métodos , Proteómica/estadística & datos numéricos , Trombospondina 1/administración & dosificación , Trombospondinas/administración & dosificación , Microambiente Tumoral/efectos de los fármacos
3.
Cell Death Discov ; 7(1): 75, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846306

RESUMEN

Both CDKN1A (p21 Waf1/Cip1) and Apoptosis signal-regulating kinase 1 (ASK1) play important roles in tumorigenesis. The role of p21 Waf1/Cip1 in attenuating ASK1-induced apoptosis by various stress conditions is well established. However, how ASK1 and p21 Waf1/Cip1 functionally interact during tumorigenesis is still unclear. To address this aspect, we crossed ASK1 knockout (ASK1KO) mice with p21 Waf1/Cip1 knockout (p21KO) mice to compare single and double-mutant mice. We observed that deletion of p21 Waf1/Cip1 leads to increased keratinocyte proliferation but also increased cell death. This is mechanistically linked to the ASK1 axis-induced apoptosis, including p38 and PARP. Indeed, deletion of ASK1 does not alter the proliferation but decreases the apoptosis of p21KO keratinocytes. To analyze as this interaction might affect skin carcinogenesis, we investigated the response of ASK1KO and p21KO mice to DMBA/TPA-induced tumorigenesis. Here we show that while endogenous ASK1 is dispensable for skin homeostasis, ASK1KO mice are resistant to DMBA/TPA-induced tumorigenesis. However, we found that epidermis lacking both p21 and ASK1 reacquires increased sensitivity to DMBA/TPA-induced tumorigenesis. We demonstrate that apoptosis and cell-cycle progression in p21KO keratinocytes are uncoupled in the absence of ASK1. These data support the model that a critical event ensuring the balance between cell death, cell-cycle arrest, and successful divisions in keratinocytes during stress conditions is the p21-dependent ASK1 inactivation.

4.
Molecules ; 24(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817098

RESUMEN

Hailey-Hailey disease (HHD) is a rare, chronic and recurrent blistering disorder, characterized by erosions occurring primarily in intertriginous regions and histologically by suprabasal acantholysis. Mutation of the Golgi Ca2+-ATPase ATP2C1 has been identified as having a causative role in Hailey-Hailey disease. HHD-derived keratinocytes have increased oxidative-stress that is associated with impaired proliferation and differentiation. Additionally, HHD is characterized by skin lesions that do not heal and by recurrent skin infections, indicating that HHD keratinocytes might not respond well to challenges such as wounding or infection. Hypochlorous acid has been demonstrated in vitro and in vivo to possess properties that rescue both oxidative stress and altered wound repair process. Thus, we investigated the potential effects of a stabilized form of hypochlorous acid (APR-TD012) in an in vitro model of HHD. We found that treatment of ATP2C1-defective keratinocytes with APR-TD012 contributed to upregulation of Nrf2 (nuclear factor (erythroid-derived 2)-like 2). Additionally, APR TD012-treatment restored the defective proliferative capability of siATP2C1-treated keratinocytes. We also found that the APR-TD012 treatment might support wound healing process, due to its ability to modulate the expression of wound healing associated cytokines. These observations suggested that the APR-TD012 might be a potential therapeutic agent for HHD-lesions.


Asunto(s)
Ácidos/química , Ácido Hipocloroso/uso terapéutico , Soluciones Hipotónicas/uso terapéutico , Pénfigo Familiar Benigno/tratamiento farmacológico , Antioxidantes/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácido Hipocloroso/farmacología , Soluciones Hipotónicas/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Pénfigo Familiar Benigno/genética , Pénfigo Familiar Benigno/patología , Especies Reactivas de Oxígeno/metabolismo , Soluciones , Cicatrización de Heridas/efectos de los fármacos
5.
J Biol Chem ; 294(47): 17941-17950, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31597699

RESUMEN

Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor suppressor and oncogenic components. To identify regulators that might control this dual activity of NOTCH1, we screened a chemical library targeting kinases and identified Polo-like kinase 1 (PLK1) as one of the kinases involved in arsenite-induced NOTCH1 down-modulation. As PLK1 activity drives mitotic entry but also is inhibited after DNA damage, we investigated the PLK1-NOTCH1 interplay in the G2 phase of the cell cycle and in response to DNA damage. Here, we found that PLK1 regulates NOTCH1 expression at G2/M transition. However, when cells in G2 phase are challenged with DNA damage, PLK1 is inhibited to prevent entry into mitosis. Interestingly, we found that the interaction between NOTCH1 and PLK1 is functionally important during the DNA damage response, as we found that whereas PLK1 activity is inhibited, NOTCH1 expression is maintained during DNA damage response. During genotoxic stress, cellular transformation requires that promitotic activity must override DNA damage checkpoint signaling to drive proliferation. Interestingly, we found that arsenite-induced genotoxic stress causes a PLK1-dependent signaling response that antagonizes the involvement of NOTCH1 in the DNA damage checkpoint. Taken together, our data provide evidence that Notch signaling is altered but not abolished in SCC cells. Thus, it is also important to recognize that Notch plasticity might be modulated and could represent a key determinant to switch on/off either the oncogenic or tumor suppressor function of Notch signaling in a single type of tumor.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptor Notch1/metabolismo , Apoptosis/efectos de los fármacos , Arsenitos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fase G2/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Mitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Especificidad por Sustrato/efectos de los fármacos , Quinasa Tipo Polo 1
6.
Int J Mol Sci ; 20(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832234

RESUMEN

DNA is an entity shielded by mechanisms that maintain genomic stability and are essential for living cells; however, DNA is constantly subject to assaults from the environment throughout the cellular life span, making the genome susceptible to mutation and irreparable damage. Cells are prepared to mend such events through cell death as an extrema ratio to solve those threats from a multicellular perspective. However, in cells under various stress conditions, checkpoint mechanisms are activated to allow cells to have enough time to repair the damaged DNA. In yeast, entry into the cell cycle when damage is not completely repaired represents an adaptive mechanism to cope with stressful conditions. In multicellular organisms, entry into cell cycle with damaged DNA is strictly forbidden. However, in cancer development, individual cells undergo checkpoint adaptation, in which most cells die, but some survive acquiring advantageous mutations and selfishly evolve a conflictual behavior. In this review, we focus on how, in cancer development, cells rely on checkpoint adaptation to escape DNA stress and ultimately to cell death.


Asunto(s)
Daño del ADN , Puntos de Control del Ciclo Celular , Reparación del ADN , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA