Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38468005

RESUMEN

Lithium recovery from Lithium-ion batteries requires hydrometallurgy but up-to-date technologies aren't economically viable for Lithium-Iron-Phosphate (LFP) batteries. Selective leaching (specifically targeting Lithium and based on mild organic acids and low temperatures) is attracting attention because of decreased environmental impacts compared to conventional hydrometallurgy. This study analysed the technical and economic performances of selective leaching with 6%vv. H2O2 and citric acid (0.25-1 M, 25 °C, 1 h, 70 g/l) compared with conventional leaching with an inorganic acid (H2SO4 1 M, 40 °C, 2 h, 50 g/l) and an organic acid (citric acid 1 M, 25 °C, 1 h, 70 g/l) to recycle end of life LFP cathodes. After conventional leaching, chemical precipitation allowed to recover in multiple steps Li, Fe and P salts, while selective leaching allowed to recover Fe and P, in the leaching residues and required chemical precipitation only for lithium recovery. Conventional leaching with 1 M acids achieved leaching efficiencies equal to 95 ± 2% for Li, 98 ± 8% for Fe, 96 ± 3% for P with sulfuric acid and 83 ± 0.8% for Li, 8 ± 1% for Fe, 12 ± 5% for P with citric acid. Decreasing citric acid's concentration from 1 to 0.25 M didn't substantially change leaching efficiency. Selective leaching with citric acid has higher recovery efficiency (82 ± 6% for Fe, 74 ± 8% for P, 29 ± 5% for Li) than conventional leaching with sulfuric acid (69 ± 15% for Fe, 70 ± 18% for P, and 21 ± 2% for Li). Also, impurities' amounts were lower with citric acid (335 ± 19 335 ± 19 of S mg/kg of S) than with sulfuric acid (8104 ± 2403 mg/kg of S). In overall, the operative costs associated to 0.25 M citric acid route (3.17€/kg) were lower compared to 1 M sulfuric acid (3.52€/kg). In conclusion, citric acid could be a viable option to lower LFP batteries' recycling costs, and it should be further explored prioritizing Lithium recovery and purity of recovered materials.

2.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571076

RESUMEN

Lithium-oxygen batteries, with their very high energy density (3500 Wh kg-1), could represent a real breakthrough in the envisioned strategies towards more efficient energy storage solutions for a less and less carbonated energy mix. However, the problems associated with this technology are numerous. A first one is linked to the high reactivity of the lithium metal anode, while a second one is linked to the highly oxidative environment created by the cell's O2 saturation. Keeping in mind the necessity for greener materials in future energy storage solutions, in this work an innovative lithium protective membrane is prepared based on chitosan, a polysaccharide obtained from the deacetylation reaction of chitin. Chitosan was methacrylated through a simple, one-step reaction in water and then cross-linked by UV-induced radical polymerization. The obtained membranes were successively activated in liquid electrolyte and used as a lithium protection layer. The cells prepared with protected lithium were able to reach a higher full discharge capacity, and the chitosan's ability to slow down degradation processes was verified by post-mortem analyses. Moreover, in long cycling conditions, the protected lithium cell performed more than 40 cycles at 0.1 mA cm-2, at a fixed capacity of 0.5 mAh cm-2, retaining 100% coulombic efficiency, which is more than twice the lifespan of the bare lithium cell.

3.
Nanomaterials (Basel) ; 13(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513160

RESUMEN

Lithium-sulfur technology is a strong candidate for the future generation of batteries due to its high specific capacity (1675 mAh g-1), low cost, and environmental impact. In this work, we propose a facile and solvent-free microwave synthesis for a composite material based on doped (sulfur and nitrogen) reduced graphene oxide embedded with zinc sulfide nanoparticles (SN-rGO/ZnS) to improve the battery performance. The chemical-physical characterization (XRD, XPS, FESEM, TGA) confirmed the effectiveness of the microwave approach in synthesizing the composite materials and their ability to be loaded with sulfur. The materials were then thoroughly characterized from an electrochemical point of view (cyclic voltammetry, galvanostatic cycling, Tafel plot, electrochemical impedance spectroscopy, and Li2S deposition test); the SN-rGO/ZnS/S8 cathode showed a strong affinity towards polysulfides, thus reducing their loss by diffusion and improving redox kinetics, allowing for faster LiPSs conversion. In terms of performance, the composite-based cathode increased the specific capacity at high rate (1 C) from 517 to 648 mAh g-1. At the same time, more stable behavior was observed at 0.5 C with capacity retention at the 750th cycle, where it was raised from 32.5% to 48.2%, thus confirming the beneficial effect of the heteroatomic doping process and the presence of zinc sulfide nanoparticles.

4.
ACS Appl Polym Mater ; 4(5): 3855-3865, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35601462

RESUMEN

In this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of ∼65-70 kJ mol-1. A rubbery plateau modulus of 0.65-0.78 MPa and a crosslinking density of 2 × 10-4 mol cm-3 were found through dynamic mechanical analysis. Based on these characteristics, such biobased membranes were tested for applicability as GPEs for potassium-ion batteries (KIBs), showing an excellent electrochemical stability toward potassium metal in the -0.2-5 V voltage range and suitable ionic conductivity (10-3 S cm-1) at room temperature. This study demonstrates the practical viability of these biobased materials as efficient GPEs for the fabrication of KIBs, paving the path to increased sustainability in the field of next-generation battery technologies.

5.
ChemSusChem ; 15(12): e202200294, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35363435

RESUMEN

Potassium batteries show interesting peculiarities as large-scale energy storage systems and, in this scenario, the formulation of polymer electrolytes obtained from sustainable resources or waste-derived products represents a milestone activity. In this study, a lignin-based membrane is designed by crosslinking a pre-oxidized Kraft lignin matrix with an ethoxylated difunctional oligomer, leading to self-standing membranes that are able to incorporate solvated potassium salts. The in-depth electrochemical characterization highlights a wide stability window (up to 4 V) and an ionic conductivity exceeding 10-3  S cm-1 at ambient temperature. When potassium metal cell prototypes are assembled, the lignin-based electrolyte attains significant electrochemical performances, with an initial specific capacity of 168 mAh g-1 at 0.05 A g-1 and an excellent operation for more than 200 cycles, which is an unprecedented outcome for biosourced systems in potassium batteries.


Asunto(s)
Polímeros , Potasio , Suministros de Energía Eléctrica , Electrólitos/química , Lignina/química , Polímeros/química , Residuos
6.
Chemistry ; 28(6): e202104201, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34870350

RESUMEN

Manufactured globally on industrial scale, cyclodextrins (CD) are cyclic oligosaccharides produced by enzymatic conversion of starch. Their typical structure of truncated cone can host a wide variety of guest molecules to create inclusion complexes; indeed, we daily use CD as unseen components of food, cosmetics, textiles and pharmaceutical excipients. The synthesis of active material composites from CD resources can enable or enlarge the effective utilization of these products in the battery industry with some economical as well as environmental benefits. New and simple strategies are here presented for the synthesis of nanostructured silicon and sulfur composite materials with carbonized hyper cross-linked CD (nanosponges) that show satisfactory performance as high-capacity electrodes. For the sulfur cathode, the mesoporous carbon host limits polysulfide dissolution and shuttle effects and guarantees stable cycling performance. The embedding of silicon nanoparticles into the carbonized nanosponge allows to achieve high capacity and excellent cycling performance. Moreover, due to the high surface area of the silicon composite, the characteristics at the electrode/electrolyte interface dominate the overall electrochemical reversibility, opening a detailed analysis on the behavior of the material in different electrolytes. We show that the use of commercial LP30 electrolyte causes a larger capacity fade, and this is associated with different solid electrolyte interface layer formation and it is also demonstrated that fluoroethylene carbonate addition can significantly increase the capacity retention and the overall performance of our nanostructured Si/C composite in both ether-based and LP30 electrolytes. As a result, an integration of the Si/C and S/C composites is proposed to achieve a complete lithiated Si-S cell.


Asunto(s)
Ciclodextrinas , Silicio , Carbono , Electrodos , Azufre
7.
Polymers (Basel) ; 13(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067902

RESUMEN

Li-O2 batteries represent a promising rechargeable battery candidate to answer the energy challenges our world is facing, thanks to their ultrahigh theoretical energy density. However, the poor cycling stability of the Li-O2 system and, overall, important safety issues due to the formation of Li dendrites, combined with the use of organic liquid electrolytes and O2 cross-over, inhibit their practical applications. As a solution to these various issues, we propose a composite gel polymer electrolyte consisting of a highly cross-linked polymer matrix, containing a dextrin-based nanosponge and activated with a liquid electrolyte. The polymer matrix, easily obtained by thermally activated one pot free radical polymerization in bulk, allows to limit dendrite nucleation and growth thanks to its cross-linked structure. At the same time, the nanosponge limits the O2 cross-over and avoids the formation of crystalline domains in the polymer matrix, which, combined with the liquid electrolyte, allows a good ionic conductivity at room temperature. Such a composite gel polymer electrolyte, tested in a cell containing Li metal as anode and a simple commercial gas diffusion layer, without any catalyst, as cathode demonstrates a full capacity of 5.05 mAh cm-2 as well as improved reversibility upon cycling, compared to a cell containing liquid electrolyte.

8.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809914

RESUMEN

Magnesium-based batteries represent one of the successfully emerging electrochemical energy storage chemistries, mainly due to the high theoretical volumetric capacity of metallic magnesium (i.e., 3833 mAh cm-3 vs. 2046 mAh cm-3 for lithium), its low reduction potential (-2.37 V vs. SHE), abundance in the Earth's crust (104 times higher than that of lithium) and dendrite-free behaviour when used as an anode during cycling. However, Mg deposition and dissolution processes in polar organic electrolytes lead to the formation of a passivation film bearing an insulating effect towards Mg2+ ions. Several strategies to overcome this drawback have been recently proposed, keeping as a main goal that of reducing the formation of such passivation layers and improving the magnesium-related kinetics. This manuscript offers a literature analysis on this topic, starting with a rapid overview on magnesium batteries as a feasible strategy for storing electricity coming from renewables, and then addressing the most relevant outcomes in the field of anodic materials (i.e., metallic magnesium, bismuth-, titanium- and tin-based electrodes, biphasic alloys, nanostructured metal oxides, boron clusters, graphene-based electrodes, etc.).

9.
ChemSusChem ; 11(11): 1838-1848, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29624888

RESUMEN

In Li-S batteries, it is important to ensure efficient reversible conversion of sulfur to lithium polysulfide (LiPS). Shuttling effects caused by LiPS dissolution can lead to reduced performance and cycle life. Although carbon materials rely on physical trapping of polysulfides, polar oxide surfaces can chemically bind LiPS to improve the stability of sulfur cathodes. We show a simple synthetic method that allows high sulfur loading into mesoporous carbon preloaded with spatially localized nanoparticles of several Magnéli-phase titanium oxide (Tin O2n-1 ). This material simultaneously suppresses polysulfide shuttling phenomena by chemically binding Li polysulfides onto several Magnéli-phase surfaces in a single cathode and ensures physical confinement of sulfur and LiPS. The synergy between chemical immobilization of significant quantities of LiPS at the surface of several Tin O2n-1 phases and physical entrapment results in coulombically efficient high-rate cathodes with long cycle life and high capacity. These cathodes function efficiently at low electrolyte-to-sulfur ratios to provide high gravimetric and volumetric capacities in comparison with their highly porous carbon counterparts. Assembled coin cells have an initial discharge capacity of 1100 mAh g-1 at 0.1C and maintain a reversible capacity of 520 mAh g-1 at 0.2C for more than 500 cycles. Even at 1C, the cell loses only 0.06 % per cycle for 1000 cycles with a coulombic efficiency close to 99 %.

10.
ChemSusChem ; 10(3): 575-586, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-27899004

RESUMEN

Fundamental research on Li-O2 batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O2 system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuOx nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O2 cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuOx nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.5 V) instead of polyvinylidene fluoride (PVDF). The Ru/RuOx /ITO nanocrystalline materials in DMSO provide efficient Li2 O2 decomposition from within the cathode during cycling. We demonstrate that the ITO is actually unstable from the first cycle and is modified by chemical etching, but the Ru/RuOx NPs remain effective OER catalysts for Li2 O2 during cycling. The CMC binders avoid PVDF-based side-reactions and improve the cyclability. The deterioration of the ITO nanocrystals is mitigated significantly in cathodes with a CMC binder, and the cells show good cycle life. In mixed DMSO-EMITFSI [EMITFSI=1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide] ionic liquid electrolytes, the Ru/RuOx /ITO materials in Li-O2 cells cycle very well and maintain a consistently very low charge overpotential of 0.5-0.8 V.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Nanopartículas del Metal/química , Oxígeno/química , Rutenio/química , Solventes/química , Compuestos de Estaño/química , Catálisis , Electroquímica , Electrodos , Oxidación-Reducción , Compuestos de Rutenio/química
11.
Membranes (Basel) ; 2(2): 307-24, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24958178

RESUMEN

In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

12.
Free Radic Res ; 42(8): 437-745, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18712631

RESUMEN

The occupational exposure to cobalt/tungsten carbide (Co/WC) dusts causes asthma and interstitial fibrosis. The International Agency for Research on Cancer (IARC) recently classified the mixture Co/WC as probably carcinogenic to humans (group 2A). The mechanism of action of Co/WC involves particle driven generation of Reactive Oxygen Species (ROS) with consequent oxidative damage. The present study evaluates the reactivity of Co/WC dust toward glutathione (GSH) and cysteine (Cys). Co/WC oxidized thiols through a mechanism involving the generation of sulphur-centred radicals. The results are consistent with the oxidation taking place at surface active sites, a part of which is accessible only to Cys S-H groups, but not to GSH ones. Such a reaction, with consequent irreversible depletion of antioxidant defenses of cells, will potentiate the oxidative stress caused by particle and cell generated ROS.


Asunto(s)
Cobalto/toxicidad , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Tungsteno/toxicidad , Electroquímica , Espectroscopía de Resonancia por Spin del Electrón , Oxidación-Reducción , Superóxidos/metabolismo , Oligoelementos , Xantina/metabolismo , Xantina Oxidasa/metabolismo
13.
Ann Chim ; 92(10): 983-94, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12489264

RESUMEN

The main aspects and results of some electrokinetic filtration tests are presented. Both theory and tests show the key role played by the electrochemical boundary phenomena, such as the electrode reactions, and by the mineralogy of the soil. The aforementioned results show the necessity to run long duration tests. Indeed the macroscopic properties of the soil can change widely during the tests, therefore affecting the expected results in terms of environmental remediation or consolidation but also in terms of energy consumption and efficiency.


Asunto(s)
Silicatos de Aluminio/química , Electroquímica/métodos , Modelos Químicos , Contaminantes del Suelo , Bentonita/química , Arcilla , Electroquímica/instrumentación , Filtración/instrumentación , Filtración/métodos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...