Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 115(4): 574-590, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33053232

RESUMEN

Extrachromosomal (ec) DNAs are genetic elements that exist separately from the genome. Since ecDNA can carry beneficial genes, they are a powerful adaptive mechanism in cancers and many pathogens. For the first time, we report ecDNA contributing to antimalarial resistance in Plasmodium falciparum, the most virulent human malaria parasite. Using pulse field gel electrophoresis combined with PCR-based copy number analysis, we detected two ecDNA elements that differ in migration and structure. Entrapment in the electrophoresis well and low susceptibility to exonucleases revealed that the biologically relevant ecDNA element is large and complex in structure. Using deep sequencing, we show that ecDNA originates from the chromosome and expansion of an ecDNA-specific sequence may improve its segregation or expression. We speculate that ecDNA is maintained using established mechanisms due to shared characteristics with the mitochondrial genome. Implications of ecDNA discovery in this organism are wide-reaching due to the potential for new strategies to target resistance development.


Asunto(s)
Resistencia a Medicamentos/genética , Genoma de Protozoos , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Adaptación Fisiológica , Antimaláricos/farmacología , ADN Protozoario , Amplificación de Genes , Humanos , Pirimidinas/farmacología
2.
Elife ; 92020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33315010

RESUMEN

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.


Asunto(s)
Conectoma , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/fisiología , Animales , Mapeo Encefálico , Cuerpos Pedunculados/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...