Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Trials ; 24(1): 756, 2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38008760

RESUMEN

BACKGROUND: Providing optimal care for critically ill patients is an extremely important but also highly demanding task, both emotionally and physically. The "ICU Support" team meeting concept aims to support intensive care unit (ICU) teams by promoting interprofessional communication, peer support, and patient safety by providing a structure for daily team meetings. This protocol describes a study to explore the effectiveness of "ICU Support" for patient- and staff-centered outcomes. METHODS: ICU Support will be implemented at nine university hospitals located in Germany, following a two-arm randomized parallel group design with an intervention and a control condition and three data collection periods. In the intervention arm, leading ICU personnel (physicians and nurses) will be trained in ICU Support and implement the ICU Support elements into the daily work routine of their units upon completion of data collection period T0 (baseline). In the control arm, ICU Support will not be implemented until the completion of the data collection period T1 (1 month after study start). Until then, the regular daily schedule of the ICU teams will be maintained. The final data collection period (T2) will take place 4 months after the start of the study. Primary outcomes include the number of intensive care complications per patient during their ICU stay during T1 and the sick-related absence of ICU staff during T1. Secondary outcomes include, among others, the average severity of intensive care complications per patient and employee self-reported data regarding their teamwork and patient safety behaviors. DISCUSSION: The need for healthy and well-trained ICU staff is omnipresent; thus, structured and evidence-based interventions aimed at supporting ICU teams and facilitating patient safety are required. This multicenter study aims to explore the effectiveness of ICU Support for patient- and staff-centered outcomes. The insights derived from this study have the potential to significantly improve ICU patient safety, staff communication, and connectedness and decrease sickness-related expenses and social costs associated with high work demands among ICU staff. TRIAL REGISTRATION: German Clinical Trials Register DRKS00028642 . Registered on 4 April 2022.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Unidades de Cuidados Intensivos , Cuidados Críticos , Atención Dirigida al Paciente , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
2.
Biomed Eng Online ; 22(1): 47, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193969

RESUMEN

BACKGROUND: Mechanical ventilation is an essential component in the treatment of patients with acute respiratory distress syndrome. Prompt adaptation of the settings of a ventilator to the variable needs of patients is essential to ensure personalised and protective ventilation. Still, it is challenging and time-consuming for the therapist at the bedside. In addition, general implementation barriers hinder the timely incorporation of new evidence from clinical studies into routine clinical practice. RESULTS: We present a system combing clinical evidence and expert knowledge within a physiological closed-loop control structure for mechanical ventilation. The system includes multiple controllers to support adequate gas exchange while adhering to multiple evidence-based components of lung protective ventilation. We performed a pilot study on three animals with an induced ARDS. The system achieved a time-in-target of over 75 % for all targets and avoided any critical phases of low oxygen saturation, despite provoked disturbances such as disconnections from the ventilator and positional changes of the subject. CONCLUSIONS: The presented system can provide personalised and lung-protective ventilation and reduce clinician workload in clinical practice.


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Animales , Proyectos Piloto , Volumen de Ventilación Pulmonar/fisiología , Pulmón , Respiración , Síndrome de Dificultad Respiratoria/terapia
3.
Artículo en Inglés | MEDLINE | ID: mdl-36429731

RESUMEN

Due to the global COVID-19 pandemic, a concomitant increase in awareness for end-of-life decisions (EOLDs) and advance care planning has been noted. Whether the dynamic pandemic situation impacted EOLD-processes on the intensive care unit (ICU) and patient-sided advance care planning in Germany is unknown. This is a retrospective analysis of all deceased patients of surgical ICUs of a university medical center from March 2020 to July 2021. All included ICUs had established standardized protocols and documentation for EOLD-related aspects of ICU therapy. The frequency of EOLDs and advance directives and the process of EOLDs were analyzed (No. of ethical approval EA2/308/20). A total number of 319 (85.5%) of all deceased patients received an EOLD. Advance directives were possessed by 83 (22.3%) of the patients and a precautionary power of attorney by 92 (24.7%) of the patients. There was no difference in the frequency of EOLDs and patient-sided advance care planning between patients with COVID-19 and non-COVID-19 patients. In addition, no differences in frequencies of do-not-resuscitate orders, withholding or withdrawing of intensive care medicine therapeutic approaches, timing of EOLDs, and participation of senior ICU attendings in EOLDs were noted between patients with COVID-19 and non-COVID-19 patients. Documentation of family conferences occurred more often in deceased patients with COVID-19 compared to non-COVID-19 patients (COVID-19: 80.0% vs. non-COVID-19: 56.8, p = 0.001). Frequency of EOLDs and completion rates of advance directives remained unchanged during the pandemic compared to pre-pandemic years. The EOLD process did not differ between patients with COVID-19 and non-COVID-19 patients. Institutional standard procedures might contribute to support the robustness of EOLD-making processes during unprecedented medical emergencies, such as new pandemic diseases.


Asunto(s)
COVID-19 , Cuidado Terminal , Humanos , Pandemias , Estudios Retrospectivos , Toma de Decisiones , COVID-19/epidemiología , Unidades de Cuidados Intensivos
4.
Intensive Care Med Exp ; 10(1): 32, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35902450

RESUMEN

BACKGROUND: Models of hypoxemic lung injury caused by lavage-induced pulmonary surfactant depletion are prone to prompt recovery of blood oxygenation following recruitment maneuvers and have limited translational validity. We hypothesized that addition of injurious ventilation following surfactant-depletion creates a model of the acute respiratory distress syndrome (ARDS) with persistently low recruitability and higher levels of titrated "best" positive end-expiratory pressure (PEEP) during protective ventilation. METHODS: Two types of porcine lung injury were induced by lung lavage and 3 h of either protective or injurious ventilation, followed by 3 h of protective ventilation (N = 6 per group). Recruitment maneuvers (RM) and decremental PEEP trials comparing oxygenation versus dynamic compliance were performed after lavage and at 3 h intervals of ventilation. Pulmonary gas exchange function, respiratory mechanics, and ventilator-derived parameters were assessed after each RM to map the course of injury severity and recruitability. RESULTS: Lung lavage impaired respiratory system compliance (Crs) and produced arterial oxygen tensions (PaO2) of 84±13 and 80±15 (FIO2 = 1.0) with prompt increase after RM to 270-395 mmHg in both groups. After subsequent 3 h of either protective or injurious ventilation, PaO2/FIO2 was 104±26 vs. 154±123 and increased to 369±132 vs. 167±87 mmHg in response to RM, respectively. After additional 3 h of protective ventilation, PaO2/FIO2 was 120±15 vs. 128±37 and increased to 470±68 vs. 185±129 mmHg in response to RM, respectively. Subsequently, decremental PEEP titration revealed that Crs peaked at 36 ± 10 vs. 25 ± 5 ml/cm H2O with PEEP of 12 vs. 16 cmH2O, and PaO2/FIO2 peaked at 563 ± 83 vs. 334 ± 148 mm Hg with PEEP of 16 vs. 22 cmH2O in the protective vs. injurious ventilation groups, respectively. The large disparity of recruitability between groups was not reflected in the Crs nor the magnitude of mechanical power present after injurious ventilation, once protective ventilation was resumed. CONCLUSION: Addition of transitory injurious ventilation after lung lavage causes prolonged acute lung injury with diffuse alveolar damage and low recruitability yielding high titrated PEEP levels. Mimicking lung mechanical and functional characteristics of ARDS, this porcine model rectifies the constraints of single-hit lavage models and may enhance the translation of experimental research on mechanical ventilation strategies.

5.
Crit Care Explor ; 4(4): e0671, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35372842

RESUMEN

To investigate the ICU survival of venovenous extracorporeal membrane oxygenation (ECMO) patients suffering from COVID-19-related acute respiratory distress syndrome (ARDS) versus ECMO patients without COVID-19 (non-COVID-19)-related ARDS. DESIGN: Preliminary analysis of data from two prospective ECMO trials and retrospective analysis of a cohort of ARDS ECMO patients. SETTING: Single-center ICU. PATIENTS: Adult ARDS ECMO patients, 16 COVID-19 versus 23 non-COVID-19 patients. Analysis of retrospective data from 346 adult ARDS ECMO patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: COVID-19 and non-COVID-19 ARDS patients did not differ with respect to preexisting disease or body mass index. ICU survival rate was 62% for COVID-19 ECMO patients and 70% for non-COVID-19 ECMO patients. COVID-19 ECMO survivors were supported with ECMO for a median of 43 days (interquartile range [IQR], 18-58 d) versus 16 days (IQR, 19-39 d; p = 0.03) for non-COVID-19 patients. The median duration of ECMO therapy for all ARDS patients between 2007 and 2018 was 15 days (IQR, 6-28 d). The subgroup of patients suffering from any viral pneumonia received ECMO support for a median of 16 days (IQR, 9-27 d), survivors of influenza pneumonia received ECMO support for 13 days (IQR, 7-25 d). CONCLUSIONS: COVID-19 patients required significant longer ECMO support compared with patients without COVID-19 to achieve successful ECMO weaning and ICU survival.

6.
Crit Care ; 26(1): 50, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193645

RESUMEN

BACKGROUND: Increased plasma concentrations of circulating cell-free hemoglobin (CFH) are supposed to contribute to the multifactorial etiology of acute kidney injury (AKI) in critically ill patients while the CFH-scavenger haptoglobin might play a protective role. We evaluated the association of CFH and haptoglobin with AKI in patients with an acute respiratory distress syndrome (ARDS) requiring therapy with VV ECMO. METHODS: Patients with CFH and haptoglobin measurements before initiation of ECMO therapy were identified from a cohort of 1044 ARDS patients and grouped into three CFH concentration groups using a risk stratification. The primary objective was to assess the association of CFH and haptoglobin with KDIGO stage 3 AKI. Further objectives included the identification of a target haptoglobin concentration to protect from CFH-associated AKI. MEASUREMENTS AND MAIN RESULTS: Two hundred seventy-three patients fulfilled the inclusion criteria. Of those, 154 patients (56.4%) had AKI at ECMO initiation. The incidence of AKI increased stepwise with increasing concentrations of CFH reaching a plateau at 15 mg/dl. Compared to patients with low [< 5 mg/dl] CFH concentrations, patients with moderate [5-14 mg/dl] and high [≥ 15 mg/dl] CFH concentrations had a three- and five-fold increased risk for AKI (adjusted odds ratio [OR] moderate vs. low, 2.69 [95% CI, 1.25-5.95], P = 0.012; and OR high vs. low, 5.47 [2.00-15.9], P = 0.001). Among patients with increased CFH concentrations, haptoglobin plasma levels were lower in patients with AKI compared to patients without AKI. A haptoglobin concentration greater than 2.7 g/l in the moderate and 2.4 g/l in the high CFH group was identified as clinical cutoff value to protect from CFH-associated AKI (sensitivity 89.5% [95% CI, 83-96] and 90.2% [80-97], respectively). CONCLUSIONS: In critically ill patients with ARDS requiring therapy with VV ECMO, an increased plasma concentration of CFH was identified as independent risk factor for AKI. Among patients with increased CFH concentrations, higher plasma haptoglobin concentrations might protect from CFH-associated AKI and should be subject of future research.


Asunto(s)
Lesión Renal Aguda , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Lesión Renal Aguda/etiología , Adulto , Enfermedad Crítica/terapia , Haptoglobinas , Hemoglobinas , Humanos , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
7.
8.
J Clin Med ; 11(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011986

RESUMEN

Packed red blood cells (PRBCs), stored for prolonged intervals, might contribute to adverse clinical outcomes in critically ill patients. In this study, short-term outcome after transfusion of PRBCs of two storage duration periods was analyzed in patients with Acute Respiratory Distress Syndrome (ARDS). Patients who received transfusions of PRBCs were identified from a cohort of 1044 ARDS patients. Patients were grouped according to the mean storage age of all transfused units. Patients transfused with PRBCs of a mean storage age ≤ 28 days were compared to patients transfused with PRBCs of a mean storage age > 28 days. The primary endpoint was 28-day mortality. Secondary endpoints included failure-free days composites. Two hundred and eighty-three patients were eligible for analysis. Patients in the short-term storage group had similar baseline characteristics and received a similar amount of PRBC units compared with patients in the long-term storage group (five units (IQR, 3-10) vs. four units (2-8), p = 0.14). The mean storage age in the short-term storage group was 20 (±5.4) days compared with 32 (±3.1) days in the long-term storage group (mean difference 12 days (95%-CI, 11-13)). There was no difference in 28-day mortality between the short-term storage group compared with the long-term storage group (hazard ratio, 1.36 (95%-CI, 0.84-2.21), p = 0.21). While there were no differences in ventilator-free, sedation-free, and vasopressor-free days composites, patients in the long-term storage group compared with patients in the short-term storage group had a 75% lower chance for successful weaning from renal replacement therapy (RRT) within 28 days after ARDS onset (subdistribution hazard ratio, 0.24 (95%-CI, 0.1-0.55), p < 0.001). Further analysis indicated that even a single PRBC unit stored for more than 28 days decreased the chance for successful weaning from RRT. Prolonged storage of PRBCs was not associated with a higher mortality in adults with ARDS. However, transfusion of long-term stored PRBCs was associated with prolonged dependence of RRT in critically ill patients with an ARDS.

9.
J Clin Monit Comput ; 36(3): 637-648, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33735405

RESUMEN

PURPOSE: Admixture of nitric oxide (NO) to the gas inspired with mechanical ventilation can be achieved through continuous, timed, or pulsed injection of NO into the inspiratory limb. The dose and timing of NO injection govern the inspired and intrapulmonary effect site concentrations achieved with different administration modes. Here we test the effectiveness and target reliability of a new mode injecting pulsed NO boluses exclusively during early inspiration. METHODS: An in vitro lung model was operated under various ventilator settings. Admixture of NO through injection into the inspiratory limb was timed either (i) selectively during early inspiration ("pulsed delivery"), or as customary, (ii) during inspiratory time or (iii) the entire respiratory cycle. Set NO target concentrations of 5-40 parts per million (ppm) were tested for agreement with the yield NO concentrations measured at various sites in the inspiratory limb, to assess the effectiveness of these NO administration modes. RESULTS: Pulsed delivery produced inspiratory NO concentrations comparable with those of customary modes of NO administration. At low (450 ml) and ultra-low (230 ml) tidal volumes, pulsed delivery yielded better agreement of the set target (up to 40 ppm) and inspiratory NO concentrations as compared to customary modes. Pulsed delivery with NO injection close to the artificial lung yielded higher intrapulmonary NO concentrations than with NO injection close to the ventilator. The maximum inspiratory NO concentration observed in the trachea (68 ± 30 ppm) occurred with pulsed delivery at a set target of 40 ppm. CONCLUSION: Pulsed early inspiratory phase NO injection is as effective as continuous or non-selective admixture of NO to inspired gas and may confer improved target reliability, especially at low, lung protective tidal volumes.


Asunto(s)
Óxido Nítrico , Respiración , Administración por Inhalación , Humanos , Reproducibilidad de los Resultados , Respiración Artificial , Ventiladores Mecánicos
10.
Ann Surg Oncol ; 29(1): 152-162, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34350529

RESUMEN

BACKGROUND: Cytoreductive surgery (CRS) in combination with hyperthermic intraperitoneal chemotherapy (HIPEC) represents a multimodal treatment concept for patients with peritoneal surface malignancies. The use of intraperitoneal cisplatin (CDDP) is associated with a risk of acute kidney injury (AKI). The aim of this study is to evaluate the protective effect of perioperative sodium thiosulfate (STS) administration on kidney function in patients undergoing CRS and CDDP-based HIPEC. PATIENTS AND METHODS: We retrospectively analyzed clinical data of all patients who underwent CRS and CDDP-based HIPEC at our hospital between March 2017 and August 2020. Patients were stratified according to the use of sodium thiosulfate (STS vs. no STS). We compared kidney function and clinical outcome parameters between both groups and determined risk factors for postoperative AKI on univariate and multivariate analysis. AKI was classified according to acute kidney injury network (AKIN) criteria. RESULTS: Of 238 patients who underwent CRS and CDDP-based HIPEC, 46 patients received STS and 192 patients did not. There were no significant differences in baseline characteristics. In patients who received STS, a lower incidence (6.5% vs. 30.7%; p = 0.001) and severity of AKI (p = 0.009) were observed. On multivariate analysis, the use of STS (OR 0.089, p = 0.001) remained an independent kidney-protective factor, while arterial hypertension (OR 5.283, p < 0.001) and elevated preoperative urea serum level (OR 5.278, p = 0.032) were predictors for postoperative AKI. CONCLUSIONS: The present data suggest that STS protects patients from AKI caused by CRS and CDDP-based HIPEC. Further prospective studies are needed to validate the benefit of STS among kidney-protective strategies.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Cisplatino/efectos adversos , Procedimientos Quirúrgicos de Citorreducción/efectos adversos , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Estudios Retrospectivos , Tiosulfatos
11.
ASAIO J ; 68(5): 721-729, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34860710

RESUMEN

The contribution of veno-venous (VV) extracorporeal membrane oxygenation (ECMO) to systemic oxygen delivery is determined by the ratio of total extracorporeal blood flow () to cardiac output (). Thermodilution-based measurements of may be compromised by blood recirculating through the ECMO (recirculation fraction; Rf). We measured the effects of and Rf on classic thermodilution-based measurements of in six anesthetized pigs. An ultrasound flow probe measured total aortic blood flow () at the aortic root. Rf was quantified with the ultrasound dilution technique. was set to 0-125% of and was measured using a pulmonary artery catheter (PAC) in healthy and lung injured animals. PAC overestimated () at all settings compared to . The mean bias between both methods was 2.1 L/min in healthy animals and 2.7 L/min after lung injury. The difference between and increased with an of 75-125%/ compared to QEC <50%/. Overestimation of was highest when resulted in a high Rf. Thus, thermodilution-based measurements can overestimate cardiac output during VV ECMO. The degree of overestimation of depends on the EC/ ratio and the recirculation fraction.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Termodilución , Animales , Gasto Cardíaco/fisiología , Oxigenación por Membrana Extracorpórea/métodos , Hemodinámica , Pulmón , Porcinos , Termodilución/métodos
12.
Medicina (Kaunas) ; 57(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34577853

RESUMEN

Background and Objectives: Mortality on Intensive Care Units (ICUs) is high and death frequently occurs after decisions to limit life-sustaining therapies. An advance directive is a tool meant to preserve patient autonomy by guiding anticipated future treatment decisions once decision-making capacity is lost. Since September 2009, advance directives are legally binding for the caregiver team and the patients' surrogate decision-maker in Germany. The change in frequencies of end-of-life decisions (EOLDs) and completed advance directives among deceased ICU patients ten years after the enactment of a law on advance directives in Germany is unknown. Materials and Methods: Retrospective analysis on all deceased patients of surgical ICUs of a German university medical center from 08/2008 to 09/2009 and from 01/2019 to 09/2019. Frequency of EOLDs and advance directives and the process of EOLDs were compared between patients admitted before and after the change in legislation. (No. of ethical approval EA2/308/20) Results: Significantly more EOLDs occurred in the 2019 cohort compared to the 2009 cohort (85.8% vs. 70.7% of deceased patients, p = 0.006). The number of patients possessing an advance directive to express a living or therapeutic will was higher in the 2019 cohort compared to the 2009 cohort (26.4% vs. 8.9%; difference: 17.5%, p < 0.001). Participation of the patients' family in the EOLD process (74.7% vs. 60.9%; difference: 13.8%, p = 0.048) and the frequency of documentation of EOLD-relevant information (50.0% vs. 18.7%; difference: 31.3%, p < 0.001) increased from 2009 to 2019. Discussion: During a ten-year period from 2009 to 2019, the frequency of EOLDs and the completion rate of advance directives have increased considerably. In addition, EOLD-associated communication and documentation have further improved.


Asunto(s)
Directivas Anticipadas , Toma de Decisiones , Cuidados Críticos , Muerte , Alemania , Humanos , Estudios Retrospectivos
13.
Sci Total Environ ; 786: 147451, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971608

RESUMEN

The building of an effective wastewater-based epidemiological model that can translate SARS-CoV-2 concentrations in wastewater to the prevalence of virus shedders within a community is a significant challenge for wastewater surveillance. The objectives of this study were to investigate the association between SARS-CoV-2 wastewater concentrations and the COVID-19 cases at the community-level and to assess how SARS-CoV-2 wastewater concentrations should be integrated into a wastewater-based epidemiological statistical model that can provide reliable forecasts for the number of COVID-19 infections and the evolution over time as well. Weekly variations on the SARS-CoV-2 wastewater concentrations and COVID-19 cases from April 29, 2020 through February 17, 2021 were obtained in Borough of Indiana, PA. Vector autoregression (VAR) model with different data forms were fitted on this data from April 29, 2020 through January 27, 2021, and the performance in three weeks ahead forecasting (February 3, 10, and 17) were compared with measures of Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). A stationary block bootstrapping VAR method was also presented to reduce the variability in the forecasting values. Our results demonstrate that VAR(1) estimated with the logged data has the best interpretation of the data, but a VAR(1) estimated with the original data has a stronger forecasting ability. The forecast accuracy, measured by MAPE, for 1 week, 2 weeks, and 3 weeks in the future can be as low as 11.85%, 8.97% and 21.57%. The forecasting performance of the model on a short time span is unfortunately not very impressive. Also, a single increase in the SARS-CoV-2 concentration can impact the COVID-19 cases in an inverted-U shape pattern with the maximum impact occur in the third week after. The flexibility of this approach and easy-to-follow explanations are suitable for many different locations where the wastewater surveillance system has been implemented.


Asunto(s)
COVID-19 , Predicción , Humanos , Indiana , SARS-CoV-2 , Aguas Residuales
14.
J Vis Exp ; (170)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33900290

RESUMEN

Various animal models exist to study the complex pathomechanisms of the acute respiratory distress syndrome (ARDS). These models include pulmo-arterial infusion of oleic acid, infusion of endotoxins or bacteria, cecal ligation and puncture, various pneumonia models, lung ischemia/reperfusion models and, of course, surfactant depletion models, among others. Surfactant depletion produces a rapid, reproducible deterioration of pulmonary gas exchange and hemodynamics and can be induced in anesthetized pigs using repeated lung lavages with 0.9% saline (35 mL/kg body weight, 37 °C). The surfactant depletion model supports investigations with standard respiratory and hemodynamic monitoring with clinically applied devices. But the model suffers from a relatively high recruitability and ventilation with high airway pressures can immediately reduce the severity of the injury by reopening atelectatic lung areas. Thus, this model is not suitable for investigations of ventilator regimes that use high airway pressures. A combination of surfactant depletion and injurious ventilation with high tidal volume/low positive end-expiratory pressure (high Tv/low PEEP) to cause ventilator induced lung injury (VILI) will reduce the recruitability of the resulting lung injury. The advantages of a timely induction and the possibility to perform experimental research in a setting comparable to an intensive care unit are preserved.


Asunto(s)
Modelos Animales de Enfermedad , Surfactantes Pulmonares , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Animales , Hemodinámica , Pulmón , Masculino , Intercambio Gaseoso Pulmonar , Porcinos
15.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L17-L28, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33026237

RESUMEN

Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator tert-butylhydroquinone (tBHQ) protects against VILI. Male C57BL/6J mice were pretreated with an intraperitoneal injection of tBHQ (n = 10), an equivalent volume of 3% ethanol (EtOH3%, vehicle, n = 13), or phosphate-buffered saline (controls, n = 10) and were then subjected to high tidal volume (HVT) ventilation for a maximum of 4 h. HVT ventilation severely impaired arterial oxygenation ([Formula: see text] = 49 ± 7 mmHg, means ± SD) and respiratory system compliance, resulting in a 100% mortality among controls. Compared with controls, tBHQ improved arterial oxygenation ([Formula: see text] = 90 ± 41 mmHg) and respiratory system compliance after HVT ventilation. In addition, tBHQ attenuated the HVT ventilation-induced development of lung edema and proinflammatory response, evidenced by lower concentrations of protein and proinflammatory cytokines (IL-1ß and TNF-α) in the bronchoalveolar lavage fluid, respectively. Moreover, tBHQ enhanced the pulmonary redox capacity, indicated by enhanced Nrf2-depentent gene expression at baseline and by the highest total glutathione concentration after HVT ventilation among all groups. Overall, tBHQ pretreatment resulted in 60% survival (P < 0.001 vs. controls). Interestingly, compared with controls, EtOH3% reduced the proinflammatory response to HVT ventilation in the lung, resulting in 38.5% survival (P = 0.0054 vs. controls). In this murine model of VILI, tBHQ increases the pulmonary redox capacity by activating the Nrf2-ARE pathway and protects against VILI. These findings support the efficacy of pharmacological Nrf2-ARE pathway activation to increase resilience against oxidative stress during injurious mechanical ventilation.


Asunto(s)
Regulación de la Expresión Génica , Hidroquinonas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Sustancias Protectoras/farmacología , Edema Pulmonar/prevención & control , Lesión Pulmonar Inducida por Ventilación Mecánica/mortalidad , Animales , Elementos de Respuesta Antioxidante , Antioxidantes/farmacología , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Edema Pulmonar/etiología , Respiración Artificial/efectos adversos , Tasa de Supervivencia , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
16.
Curr Opin Anaesthesiol ; 33(2): 246-252, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32022729

RESUMEN

PURPOSE OF REVIEW: Trauma-associated bleeding and coagulopathy require timely identification, prevention, and effective treatment. The present review summarizes the recent literature around point-of-care (POC) coagulation tests, their usefulness in the management of trauma-induced coagulopathy (TIC), their impact on trauma patient outcomes, and the requirement of quality assurance. RECENT FINDINGS: Best practice algorithms to manage TIC have been compiled in the 2019 European Guideline on the management of major bleeding and coagulopathy after trauma. Evidence supports the use of goal-directed approaches to manage TIC. POC coagulation tests can accelerate and tailor individualized therapies. Recent findings emphasize: the time sparing of POC tests in prehospital settings and the validity of POC measurements in extreme environments; the potential scalability of POC-guided TIC algorithms in burn injuries and the pediatric population; the need for careful considerations of strategies to monitor and reverse the effects of direct oral anticoagulants in major trauma. SUMMARY: In contrast to an abundance of reviews and practical approaches to POC coagulation management in trauma patients, there is a scarcity of research in the field and large-scale clinical trials are urgently needed. The paneuropean multicenter trial Implementing Treatment Algorithms for the Correction of Trauma Induced Coagulopathy (iTACTIC) will inform on the potential of viscoelastic tests to augment transfusion protocols for better patient outcomes.


Asunto(s)
Trastornos de la Coagulación Sanguínea/diagnóstico , Transfusión Sanguínea , Hemorragia/terapia , Sistemas de Atención de Punto , Heridas y Lesiones/terapia , Humanos , Estudios Multicéntricos como Asunto
17.
Intensive Care Med Exp ; 8(1): 1, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31897796

RESUMEN

BACKGROUND: Global end-diastolic volume (GEDV) measured by transpulmonary thermodilution is regarded as indicator of cardiac preload. A bolus of cold saline injected in a central vein travels through the heart and lung, but also the aorta until detection in a femoral artery. While it is well accepted that injection in the inferior vena cava results in higher values, the impact of the aortic volume on GEDV is unknown. In this study, we hypothesized that a larger aortic volume directly translates to a numerically higher GEDV measurement. METHODS: We retrospectively analyzed data from 88 critically ill patients with thermodilution monitoring and who did require a contrast-enhanced thoraco-abdominal computed tomography scan. Aortic volumes derived from imaging were compared with GEDV measurements in temporal proximity. RESULTS: Median aortic volume was 194 ml (interquartile range 147 to 249 ml). Per milliliter increase of the aortic volume, we found a GEDV increase by 3.0 ml (95% CI 2.0 to 4.1 ml, p < 0.001). In case a femoral central venous line was used for saline bolus injection, GEDV raised additionally by 2.1 ml (95% CI 0.5 to 3.7 ml, p = 0.01) per ml volume of the vena cava inferior. Aortic volume explained 59.3% of the variance of thermodilution-derived GEDV. When aortic volume was included in multivariate regression, GEDV variance was unaffected by sex, age, body height, and weight. CONCLUSIONS: Our results suggest that the aortic volume is a substantial confounding variable for GEDV measurements performed with transpulmonary thermodilution. As the aorta is anatomically located after the heart, GEDV should not be considered to reflect cardiac preload. Guiding volume management by raw or indexed reference ranges of GEDV may be misleading.

18.
BMC Anesthesiol ; 19(1): 204, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699033

RESUMEN

BACKGROUND: Frailty is a frequent and underdiagnosed functional syndrome involving reduced physiological reserves and an increased vulnerability against stressors, with severe individual and socioeconomic consequences. A routine frailty assessment was implemented at our preoperative anaesthesia clinic to identify patients at risk. OBJECTIVE: This study examines the relationship between frailty status and the incidence of in-hospital postoperative complications in elderly surgical patients across several surgical disciplines. DESIGN: Retrospective observational analysis. SETTING: Single center, major tertiary care university hospital. Data collection took place between June 2016 and March 2017. PATIENTS: Patients 65 years old or older were evaluated for frailty using Fried's 5-point frailty assessment prior to elective non-cardiac surgery. Patients were classified into non-frail (0 criteria, reference group), pre-frail (1-2 positive criteria) and frail (3-5 positive criteria) groups. MAIN OUTCOME MEASURES: The incidence of postoperative complications was assessed until discharge from the hospital, using the roster from the National VA Surgical Quality Improvement Program. Propensity score matching and logistic regression analysis were performed. RESULTS: From 1186 elderly patients, 46.9% were classified as pre-frail (n = 556), and 11.4% as frail (n = 135). The rate of complications were significantly higher in the pre-frail (34.7%) and frail groups (47.4%), as compared to the non-frail group (27.5%). Similarly, length of stay (non-frail: 5.0 [3.0;7.0], pre-frail: 7.0 [3.0;9.0], frail 8.0 [4.5;12.0]; p < 0.001) and discharges to care facilities (non-frail:1.6%, pre-frail: 7.4%, frail: 17.8%); p < 0.001) were significantly associated with frailty status. After propensity score matching and logistic regression analysis, the risk for developing postoperative complications was approximately two-fold for pre-frail (OR 1.78; 95% CI 1.04-3.05) and frail (OR 2.08; 95% CI 1.21-3.60) patients. CONCLUSIONS: The preoperative frailty assessment of elderly patients identified pre-frail and frail subgroups to have the highest rate of postoperative complications, regardless of age, surgical discipline, and surgical risk. Significantly increased length of hospitalisation and discharges to care facilities were also observed. Implementation of routine frailty assessments appear to be an effective tool in identifying patients with increased risk. Now future studies are needed to investigate whether patients benefit from optimization of patient counselling, process planning, and risk reduction protocols based on the application of risk stratification.


Asunto(s)
Anciano Frágil , Fragilidad/epidemiología , Complicaciones Posoperatorias/epidemiología , Anciano , Estudios de Cohortes , Procedimientos Quirúrgicos Electivos/métodos , Femenino , Evaluación Geriátrica , Hospitales Universitarios , Humanos , Incidencia , Tiempo de Internación/estadística & datos numéricos , Masculino , Estudios Retrospectivos , Factores de Riesgo
19.
Crit Care Med ; 47(11): e911-e918, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31567350

RESUMEN

OBJECTIVES: Mechanical ventilation can cause ventilator-induced brain injury via afferent vagal signaling and hippocampal neurotransmitter imbalances. The triggering mechanisms for vagal signaling during mechanical ventilation are unknown. The objective of this study was to assess whether pulmonary transient receptor potential vanilloid type-4 (TRPV4) mechanoreceptors and vagal afferent purinergic receptors (P2X) act as triggers of ventilator-induced brain injury. DESIGN: Controlled, human in vitro and ex vivo studies, as well as murine in vivo laboratory studies. SETTING: Research laboratory. SUBJECTS: Wild-type, TRPV4-deficient C57BL/6J mice, 8-10 weeks old. Human postmortem lung tissue and human lung epithelial cell line BEAS-2B. INTERVENTION: Mice subjected to mechanical ventilation were studied using functional MRI to assess hippocampal activity. The effects of lidocaine (a nonselective ion-channel inhibitor), P2X-purinoceptor antagonist (iso-PPADS), or genetic TRPV4 deficiency on hippocampal dopamine-dependent pro-apoptotic signaling were studied in mechanically ventilated mice. Human lung epithelial cells (BEAS-2B) were used to study the effects of mechanical stretch on TRPV4 and P2X expression and activation. TRPV4 levels were measured in postmortem lung tissue from ventilated and nonventilated patients. MEASUREMENTS AND MAIN RESULTS: Hippocampus functional MRI analysis revealed considerable changes in response to the increase in tidal volume during mechanical ventilation. Intratracheal lidocaine, iso-PPADS, and TRPV4 genetic deficiency protected mice against ventilationinduced hippocampal pro-apoptotic signaling. Mechanical stretch in both, BEAS-2B cells and ventilated wild-type mice, resulted in TRPV4 activation and reduced Trpv4 and P2x expression. Intratracheal replenishment of adenosine triphosphate in Trpv4 mice abrogated the protective effect of TRPV4 deficiency. Autopsy lung tissue from ventilated patients showed decreased lung TRPV4 levels compared with nonventilated CONCLUSIONS:: TRPV4 mechanosensors and purinergic receptors are involved in the mechanisms of ventilator-induced brain injury. Inhibition of this neural signaling, either using nonspecific or specific inhibitors targeting the TRPV4/adenosine triphosphate/P2X signaling axis, may represent a novel strategy to prevent or treat ventilator-induced brain injury.


Asunto(s)
Lesiones Encefálicas/etiología , Pulmón/metabolismo , Receptores Purinérgicos P2X/metabolismo , Respiración Artificial/efectos adversos , Anestésicos Locales/farmacología , Animales , Lesiones Encefálicas/prevención & control , Línea Celular , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Humanos , Lidocaína/farmacología , Pulmón/patología , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2X/farmacología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Volumen de Ventilación Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...