Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cent Nerv Syst Agents Med Chem ; 22(2): 139-150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36104859

RESUMEN

BACKGROUND: Alzheimer's disease is a progressive neurodegenerative process with multifactorial characteristics. This disease follows the natural aging process, affecting mainly people over 65 years. Pharmacotherapeutic treatment currently combats symptoms related to cognitive function. Several targets have begun to attract the interest of the scientific community to develop new drug candidates which have better pharmacokinetic and lower toxicity parameters. OBJECTIVE: The present study aims to design new candidates for acetylcholinesterase/ß-secretase (AChE/BACE1) multitarget inhibitor drugs. METHODS: 17 natural products were selected from the literature with anticholinesterase activity and 1 synthetic molecule with inhibitory activity for BACE1. Subsequently, the molecular docking study was performed, followed by the derivation of the pharmacophoric pattern and prediction of pharmacokinetic and toxicological properties. Finally, the hybrid prototype was designed. RESULTS: All selected molecules showed interactions with their respective target enzymes. Derivation of the pharmacophoric pattern from molecules that interacted with the AChE enzyme resulted in 3 pharmacophoric regions: an aromatic ring, an electron-acceptor region and a hydrophobic region. The molecules showed good pharmacokinetic and toxicological results, showing no warnings of mutagenicity and/or carcinogenicity. After the hybridization process, three hybrid molecules were obtained, which showed inhibitory activity for both targets. CONCLUSION: It is concluded that research in the field of medicinal chemistry is advancing towards the discovery of new drug candidates that bring a better quality of life to patients with AD.


Asunto(s)
Acetilcolinesterasa , Secretasas de la Proteína Precursora del Amiloide , Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/química , Humanos , Simulación del Acoplamiento Molecular , Calidad de Vida
2.
Comput Biol Med ; 137: 104817, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34488030

RESUMEN

Microtubules have been widely studied in recent decades as an important pharmacological target for the treatment of cancer especially due to its key role in the mitosis process. Among the constituents of the microtubules, αß-tubulin dimers stand out in view of their four distinct interaction sites, including the so-called colchicine binding site (CBS) - a promising target for the development of new tubulin modulators. When compared to other tubulin sites, targeting the CBS is advantageous because this site is able to host ligands with lower molecular volume and lipophilicity, thus reducing the chances of entailing the phenomenon of multiple drug resistance (MDR) - one of the main reasons of failure in chemotherapy. However, colchicine, the first ligand ever discovered with affinity towards the CBS, despite modulating the action of microtubules, has shown toxicity in clinical studies. Therefore, in order to expand the known chemical space of scaffolds capable of interacting with CBS and to design non-toxic colchicine binding site inhibitors, we conducted a robust virtual screening pipeline. This has been rigorously validated and consisted of ligand- and structure-based methodologies, which allowed us to select four promising CBS inhibitors called tubLCQF1-4. These four compounds were also evaluated with long trajectories molecular dynamics simulations and respective results were used for the theoretical determination of the free energy released in the formation of the complexes, using the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) methodology.


Asunto(s)
Colchicina , Simulación de Dinámica Molecular , Sitios de Unión , Simulación del Acoplamiento Molecular , Moduladores de Tubulina/farmacología
3.
Life Sci ; 256: 117963, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32535080

RESUMEN

The new Coronavirus (SARS-CoV-2) is the cause of a serious infection in the respiratory tract called COVID-19. Structures of the main protease of SARS-CoV-2 (Mpro), responsible for the replication of the virus, have been solved and quickly made available, thus allowing the design of compounds that could interact with this protease and thus to prevent the progression of the disease by avoiding the viral peptide to be cleaved, so that smaller viral proteins can be released into the host's plasma. These structural data are extremely important for in silico design and development of compounds as well, being possible to quick and effectively identify potential inhibitors addressed to such enzyme's structure. Therefore, in order to identify potential inhibitors for Mpro, we used virtual screening approaches based with the structure of the enzyme and two compounds libraries, targeted to SARS-CoV-2, containing compounds with predicted activity against Mpro. In this way, we selected, through docking studies, the 100 top-ranked compounds, which followed to subsequent studies of pharmacokinetic and toxicity predictions. After all the simulations and predictions here performed, we obtained 10 top-ranked compounds that were again in silico analyzed inside the Mpro catalytic site, together some drugs that are being currently investigated for treatment of COVID-19. After proposing and analyzing the interaction modes of these compounds, we submitted one molecule then selected as template to a 2D similarity study in a database containing drugs approved by FDA and we have found and indicated Apixaban as a potential drug for future treatment of COVID-19.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Diseño de Fármacos , Neumonía Viral/tratamiento farmacológico , Antivirales/efectos adversos , Antivirales/farmacocinética , Betacoronavirus/aislamiento & purificación , COVID-19 , Simulación por Computador , Infecciones por Coronavirus/virología , Desarrollo de Medicamentos , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Neumonía Viral/virología , Pirazoles/farmacología , Piridonas/farmacología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...