RESUMEN
During the first semester of 2021, all of Brazil has suffered an intense wave of COVID-19 associated with the Gamma variant. In July, the first cases of Delta variant were detected in the state of Rio de Janeiro. In this work, we have employed phylodynamic methods to analyse more than 1â600 genomic sequences of Delta variant collected until September in Rio de Janeiro to reconstruct how this variant has surpassed Gamma and dispersed throughout the state. After the introduction of Delta, it has initially spread mostly in the homonymous city of Rio de Janeiro, the most populous of the state. In a second stage, dispersal occurred to mid- and long-range cities, which acted as new close-range hubs for spread. We observed that the substitution of Gamma by Delta was possibly caused by its higher viral load, a proxy for transmissibility. This variant turnover prompted a new surge in cases, but with lower lethality than was observed during the peak caused by Gamma. We reason that high vaccination rates in the state of Rio de Janeiro were possibly what prevented a higher number of deaths.
Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , SARS-CoV-2/genéticaRESUMEN
The sharp increase of COVID-19 cases in late 2020 has made Brazil the new epicenter of the ongoing SARS-CoV-2 pandemic. The novel viral lineages P.1 (Variant of Concern Gamma) and P.2, respectively identified in the Brazilian states of Amazonas and Rio de Janeiro, have been associated with potentially higher transmission rates and antibody neutralization escape. In this study, we performed the whole-genome sequencing of 185 samples isolated from three out of the five Brazilian regions, including Amazonas (North region), Rio Grande do Norte, Paraíba and Bahia (Northeast region), and Rio de Janeiro (Southeast region) in order to monitor the spread of SARS-CoV-2 lineages in Brazil in the first months of 2021. Here, we showed a widespread dispersal of P.1 and P.2 across Brazilian regions and, except for Amazonas, P.2 was the predominant lineage identified in the sampled states. We estimated the origin of P.2 lineage to have happened in February, 2020 and identified that it has differentiated into new clades. Interstate transmission of P.2 was detected since March, but reached its peak in December, 2020 and January, 2021. Transmission of P.1 was also high in December and its origin was inferred to have happened in August 2020. We also confirmed the presence of lineage P.7, recently described in the southernmost region of Brazil, to have spread across the Northeastern states. P.1, P.2 and P.7 are descended from the ancient B.1.1.28 strain, which co-dominated the first phase of the pandemic in Brazil with the B.1.1.33 strain. We also identified the occurrence of a new lineage descending from B.1.1.33 that convergently carries the E484K mutation, N.9. Indeed, the recurrent report of many novel SARS-CoV-2 genetic variants in Brazil could be due to the absence of effective control measures resulting in high SARS-CoV2 transmission rates. Altogether, our findings provided a landscape of the critical state of SARS-CoV-2 across Brazil and confirm the need to sustain continuous sequencing of the SARS-CoV-2 isolates worldwide in order to identify novel variants of interest and monitor for vaccine effectiveness.
Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Genómica/métodos , SARS-CoV-2 , Brasil/epidemiología , COVID-19/transmisión , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/genéticaRESUMEN
Chikungunya virus (CHIKV) is a re-emergent arbovirus that causes a disease characterized primarily by fever, rash and severe persistent polyarthralgia, although <1% of cases develop severe neurological manifestations such as inflammatory demyelinating diseases (IDD) of the central nervous system (CNS) like acute disseminated encephalomyelitis (ADEM) and extensive transverse myelitis. Genetic factors associated with host response and disease severity are still poorly understood. In this study, we performed whole-exome sequencing (WES) to identify HLA alleles, genes and cellular pathways associated with CNS IDD clinical phenotype outcomes following CHIKV infection. The cohort includes 345 patients of which 160 were confirmed for CHIKV. Six cases presented neurological manifestation mimetizing CNS IDD. WES data analysis was performed for 12 patients, including the CNS IDD cases and 6 CHIKV patients without any neurological manifestation. We identified 29 candidate genes harboring rare, pathogenic, or probably pathogenic variants in all exomes analyzed. HLA alleles were also determined and patients who developed CNS IDD shared a common signature with diseases such as Multiple sclerosis (MS) and Neuromyelitis Optica Spectrum Disorders (NMOSD). When these genes were included in Gene Ontology analyses, pathways associated with CNS IDD syndromes were retrieved, suggesting that CHIKV-induced CNS outcomesmay share a genetic background with other neurological disorders. To our knowledge, this study was the first genome-wide investigation of genetic risk factors for CNS phenotypes in CHIKV infection. Our data suggest that HLA-DRB1 alleles associated with demyelinating diseases may also confer risk of CNS IDD outcomes in patients with CHIKV infection.
RESUMEN
Emergence of novel SARS-CoV-2 lineages are under the spotlight of the media, scientific community and governments. Recent reports of novel variants in the United Kingdom, South Africa and Brazil (B.1.1.28-E484K) have raised intense interest because of a possible higher transmission rate or resistance to the novel vaccines. Nevertheless, the spread of B.1.1.28 (E484K) and other variants in Brazil is still unknown. In this work, we investigated the population structure and genomic complexity of SARS-CoV-2 in Rio Grande do Sul, the southernmost state in Brazil. Most samples sequenced belonged to the B.1.1.28 (E484K) lineage, demonstrating its widespread dispersion. We were the first to identify two independent events of co-infection caused by the occurrence of B.1.1.28 (E484K) with either B.1.1.248 or B.1.91 lineages. Also, clustering analysis revealed the occurrence of a novel cluster of samples circulating in the state (named VUI-NP13L) characterized by 12 lineage-defining mutations. In light of the evidence for E484K dispersion, co-infection and emergence of VUI-NP13 L in Rio Grande do Sul, we reaffirm the importance of establishing strict and effective social distancing measures to counter the spread of potentially more hazardous SARS-CoV-2 strains.