Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 10(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36013951

RESUMEN

Recent multidrug resistance in Pseudomonas aeruginosa has favoured the adaptation and dissemination of worldwide high-risk strains. In June 2018, 15 P. aeruginosa strains isolated from patients and a contaminated multi-dose meropenem vial were characterized to assess their association to an outbreak in a Mexican paediatric hospital. The strains were characterized by antibiotic susceptibility profiling, virulence factors' production, and biofilm formation. The clonal relationship among isolates was determined with pulse-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) sequencing. Repressor genes for the MexAB-OprM efflux pump were sequenced for haplotype identification. Of the strains, 60% were profiled as extensively drug-resistant (XDR), 33% as multidrug-resistant (MDR), and 6.6% were classified as sensitive (S). All strains presented intermediate resistance to colistin, and 80% were sensitive to aztreonam. Pyoverdine was the most produced virulence factor. The PFGE technique was performed for the identification of the outbreak, revealing eight strains with the same electrophoretic pattern. ST235 and ten new sequence types (STs) were identified, all closely related to ST233. ST3241 predominated in 26.66% of the strains. Twenty-five synonymous and seventeen nonsynonymous substitutions were identified in the regulatory genes of the MexAB-OprM efflux pump, and nalC was the most variable gene. Six different haplotypes were identified. Strains from the outbreak were metallo-ß-lactamases and phylogenetically related to the high-risk clone ST233.

2.
Front Microbiol ; 11: 600093, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381094

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is considered an opportunistic pathogen in humans and is mainly associated with healthcare-associated infections (HCAIs). This bacterium colonizes the skin and mucous membranes of healthy people and causes frequent hospital outbreaks. The aim of this study was to perform molecular typing of the staphylococcal cassette chromosome mec (SCCmec) and agr loci as wells as to establish the pulsotypes and clonal complexes (CCs) for MRSA and methicillin-sensitive S. aureus (MSSA) outbreaks associated with the operating room (OR) at a pediatric hospital. Twenty-five clinical strains of S. aureus (19 MRSA and 6 MSSA strains) were recovered from the outbreak (patients, anesthesia equipment, and nasopharyngeal exudates from external service anesthesia technicians). These clinical S. aureus strains were mainly resistant to benzylpenicillin (100%) and erythromycin (84%) and were susceptible to vancomycin and nitrofurantoin. The SCCmec type II was amplified in 84% of the S. aureus strains, and the most frequent type of the agr locus was agrII, which was amplified in 72% of the strains; however, the agrI and agrIII genes were mainly detected in MSSA strains. A pulsed-field gel electrophoresis (PFGE) analysis grouped the 25 strains into 16 pulsotypes (P), the most frequent of which was P1, including 10 MRSA strains related to the anesthesia equipment, external service anesthesia technicians, and hospitalized patients. Multilocus sequence typing (MLST) identified 15 sequence types (STs) distributed in nine CCs. The most prevalent ST was ST1011, belonging to CC5, which was associated with the SCCmec type II and agrII type. We postulate that the external service anesthesia technicians were MRSA carriers and that these strains were indirectly transmitted from the contaminated anesthesia equipment that was inappropriately disinfected. Finally, the MRSA outbreak was controlled when the anesthesia equipment disinfection was improved and hand hygiene was reinforced.

3.
Artículo en Inglés | MEDLINE | ID: mdl-32133303

RESUMEN

Stenotrophomonas maltophilia, an emerging opportunistic pathogen, is widely distributed in the environment the resistance mechanisms, and virulence factors of this bacterium facilitate its dissemination in hospitals. This study aimed to characterize the molecular epidemiology of S. maltophilia strains associated with an outbreak in the Children's Hospital of México Federico Gómez (HIMFG). Twenty-one clinical S. maltophilia strains were recovered from cultures of blood and urine samples from 10 pediatric patients at the emergency department, and nine environmental S. maltophilia strains recovered from faucets in the same area were also included. Two of the 10 patients were related with health care-associated infections (HCAIs), and the other eight patients (8/10) were infected with environmental S. maltophilia strains. The outbreak was controlled by monthly disinfection of the faucets in the emergency department. Typing using pulsed-field gel electrophoresis (PFGE) showed a 52% genetic diversity with seven pulsotypes denoted P1-P7 among all S. maltophilia strains. Three pulsotypes (P2, P3, and P7) were identified among both the clinical and environmental S. maltophilia strains and associated with two type sequences (STs), namely, ST304 and ST24. Moreover, 80% (24/30) of the strains exhibited resistance mainly to tetracycline, 76.66% (23/30) to trimethoprim-sulfamethoxazole, and 23.33% (7/30) to the extended-spectrum ß-lactamase (ESBL) phenotype. The main resistance genes identified by multiplex PCR were sul1 in 100% (30/30), qnr in 86.66% (26/30), and intl1 in 80% (24/30) of the samples, respectively. Furthermore, the pilU, hlylII, and rmlA genes were identified in 96.6% (29/30), 90% (27/30), and 83.33% (25/30) of the samples, respectively. Additionally, 76.66% (23/30) of the S. maltophilia strains exhibited high swimming motility, 46.66% (14/30) showed moderate biofilm formation capacity, 43.33% (13/30) displayed moderate twitching motility, and 20% (6/30) exhibited high adherence. The clinical S. maltophilia strains isolated from blood most strongly adhered to HTB-9 cells. In conclusion, the molecular epidemiology and some of the features such as resistance, and virulence genes associated with colonization patterns are pathogenic attributes that can promote S. maltophilia dissemination, persistence, and facilitate the outbreak that occurred in the HIMFG. This study supports the need for faucet disinfection as a control strategy for clinical outbreaks.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Stenotrophomonas maltophilia , Niño , Brotes de Enfermedades , Farmacorresistencia Microbiana , Infecciones por Bacterias Gramnegativas/epidemiología , Humanos , México/epidemiología , Epidemiología Molecular , Fenotipo , Stenotrophomonas maltophilia/genética , Centros de Atención Terciaria , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...